[Bug]: ValueError: This model does not support the 'reward' task. Supported tasks: {'embedding'} #11231
Open
1 task done
Labels
bug
Something isn't working
Your current environment
The output of `python collect_env.py`
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35
Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-3.10.0-1160.99.1.el7.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.6.20
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A800-SXM4-80GB
GPU 1: NVIDIA A800-SXM4-80GB
GPU 2: NVIDIA A800-SXM4-80GB
GPU 3: NVIDIA A800-SXM4-80GB
GPU 4: NVIDIA A800-SXM4-80GB
GPU 5: NVIDIA A800-SXM4-80GB
GPU 6: NVIDIA A800-SXM4-80GB
GPU 7: NVIDIA A800-SXM4-80GB
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7543 32-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 1
Core(s) per socket: 32
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 2800.0000
CPU min MHz: 1500.0000
BogoMIPS: 5589.57
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc art rep_good nopl nonstop_tsc extd_apicid aperfmperf eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_l2 cpb cat_l3 cdp_l3 invpcid_single hw_pstate sme ssbd rsb_ctxsw ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq overflow_recov succor smca
Virtualization: AMD-V
L1d cache: 2 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 32 MiB (64 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31
NUMA node1 CPU(s): 32-63
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; Load fences, usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full retpoline, IBPB
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cudnn-frontend==1.5.2
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-dali-cuda120==1.40.0
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-modelopt==0.15.0
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvimgcodec-cu12==0.3.0.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] nvidia-pyindex==1.0.9
[pip3] onnx==1.16.0
[pip3] optree==0.12.1
[pip3] pynvml==11.4.1
[pip3] pytorch-triton==3.0.0+dedb7bdf3
[pip3] pyzmq==26.1.0
[pip3] torch==2.5.1
[pip3] torch_tensorrt==2.5.0a0
[pip3] torchvision==0.20.1
[pip3] transformers==4.45.2
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.4.post1
vLLM Build Flags:
CUDA Archs: 5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV8 NV8 NV8 NV8 NV8 NV8 NV8 PXB NODE SYS SYS 0-31 0 N/A
GPU1 NV8 X NV8 NV8 NV8 NV8 NV8 NV8 PXB NODE SYS SYS 0-31 0 N/A
GPU2 NV8 NV8 X NV8 NV8 NV8 NV8 NV8 NODE PXB SYS SYS 0-31 0 N/A
GPU3 NV8 NV8 NV8 X NV8 NV8 NV8 NV8 NODE PXB SYS SYS 0-31 0 N/A
GPU4 NV8 NV8 NV8 NV8 X NV8 NV8 NV8 SYS SYS PXB NODE 32-63 1 N/A
GPU5 NV8 NV8 NV8 NV8 NV8 X NV8 NV8 SYS SYS PXB NODE 32-63 1 N/A
GPU6 NV8 NV8 NV8 NV8 NV8 NV8 X NV8 SYS SYS NODE PXB 32-63 1 N/A
GPU7 NV8 NV8 NV8 NV8 NV8 NV8 NV8 X SYS SYS NODE PXB 32-63 1 N/A
NIC0 PXB PXB NODE NODE SYS SYS SYS SYS X NODE SYS SYS
NIC1 NODE NODE PXB PXB SYS SYS SYS SYS NODE X SYS SYS
NIC2 SYS SYS SYS SYS PXB PXB NODE NODE SYS SYS X NODE
NIC3 SYS SYS SYS SYS NODE NODE PXB PXB SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NVIDIA_VISIBLE_DEVICES=
CUBLAS_VERSION=12.6.0.22
NVIDIA_REQUIRE_CUDA=cuda>=9.0
CUDA_CACHE_DISABLE=1
TORCH_CUDA_ARCH_LIST=5.2 6.0 6.1 7.0 7.2 7.5 8.0 8.6 8.7 9.0+PTX
NCCL_VERSION=2.22.3
NVIDIA_DRIVER_CAPABILITIES=all
NVIDIA_VCUDA_PATH=cf7189f5124450360b3a8fc0718cec3f
NVIDIA_PRODUCT_NAME=PyTorch
CUDA_VERSION=12.6.0.022
PYTORCH_VERSION=2.5.0a0+872d972
PYTORCH_BUILD_NUMBER=0
CUDNN_FRONTEND_VERSION=1.5.2
CUDNN_VERSION=9.3.0.75
NVIDIA_CONTAINER_UUID=86303bfb-002a-45c7-bb1d-44c762834f6a
PYTORCH_HOME=/opt/pytorch/pytorch
LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/local/lib/python3.10/dist-packages/torch/lib:/usr/local/lib/python3.10/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_BUILD_ID=107063150
OMP_NUM_THREADS=32
CUDA_DRIVER_VERSION=560.35.03
PYTORCH_BUILD_VERSION=2.5.0a0+872d972
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
CUDA_MODULE_LOADING=LAZY
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
NVIDIA_PYTORCH_VERSION=24.08
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
Model Input Dumps
No response
🐛 Describe the bug
WARNING 12-16 10:53:48 cuda.py:23] You are using a deprecated
pynvml
package. Please installnvidia-ml-py
instead, and make sure to uninstallpynvml
. When both of them are installed,pynvml
will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.Warning: Your installation of OpenCV appears to be broken: module 'cv2.dnn' has no attribute 'DictValue'.Please follow the instructions at opencv/opencv-python#884 to correct your environment. The import of cv2 has been skipped.
Traceback (most recent call last):
File "/gpfs02/unifiedcsi/gpfs/csi-dfs-ti-platform-fs/AI_center_main/wcp/data_analysis_prompt/qwen_rm.py", line 6, in
llm = LLM(model=model_path, task="reward")
File "/usr/local/lib/python3.10/dist-packages/vllm/utils.py", line 1028, in inner
return fn(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py", line 210, in init
self.llm_engine = self.engine_class.from_engine_args(
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 582, in from_engine_args
engine_config = engine_args.create_engine_config()
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py", line 959, in create_engine_config
model_config = self.create_model_config()
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py", line 891, in create_model_config
return ModelConfig(
File "/usr/local/lib/python3.10/dist-packages/vllm/config.py", line 264, in init
supported_tasks, task = self._resolve_task(task, self.hf_config)
File "/usr/local/lib/python3.10/dist-packages/vllm/config.py", line 358, in _resolve_task
raise ValueError(msg)
ValueError: This model does not support the 'reward' task. Supported tasks: {'embedding'}
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: