forked from mattiegraf/312-Kingdom-of-Zed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
genPruned_koz.hs
462 lines (347 loc) · 13.7 KB
/
genPruned_koz.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import Data.List
{-
Kingdom of Zed solver
example input:
zed ([2,2,1],[1,2,2],[3,1,2],[2,1,3])
solution:
[[1,2,3],[3,1,2],[2,3,1]]
diagram of above puzzle:
| 2 | 2 | 1 |
___|___|___|___|___
3 | 1 | 2 | 3 | 1
___|___|___|___|___
1 | 3 | 1 | 2 | 2
___|___|___|___|___
2 | 2 | 3 | 1 | 2
___|___|___|___|___
| 2 | 1 | 3 |
| | | |
In general, it will take the form:
| a | b | c |
___|___|___|___|___
l | 1 | 2 | 3 | d
___|___|___|___|___
k | 4 | 5 | 6 | e
___|___|___|___|___
j | 7 | 8 | 9 | f
___|___|___|___|___
| i | h | g |
| | | |
input:
zed ([a,b,c],[d,e,f],[g,h,i],[j,k,l])
solution:
[[1,2,3],[4,5,6],[7,8,9]]
-}
---------------------------------------------------------------------
---------------------------------------------------------------------
-- PRIMARY FUNCTION -------------------------------------------------
{-
- This is the primary function - takes a tuple of all 4 sides and generates a solution.
- If a solution does not exist, this function will throw an exception.
-}
zed conds@(top,_,_,_) =
let n = (length top)
in head (filter (isBoardValid conds) (genPrunedBoards n))
---------------------------------------------------------------------
---------------------------------------------------------------------
-- FUNCTIONS TO CHECK IF A BOARD IS A SOLUTION ----------------------
{-
- Helper to check if a given, filled board is a valid solution
-}
isBoardValid :: Integral a => ([a],[a],[a],[a]) -> [[a]] -> Bool
isBoardValid (top,right,bottom,left) board = topIsValid && rightIsValid && bottomIsValid && leftIsValid
where
ns = [0..(length top)-1]
topIsValid = (and [dirValid (top!!n) (getCol n board) | n <- ns])
rightIsValid = (and [dirValid (right!!n) (reverse (board!!n)) | n <- ns])
bottomIsValid = (and [dirValid ((reverse bottom)!!n) (reverse (getCol n board)) | n <- ns])
leftIsValid = (and [dirValid ((reverse left)!!n) (board!!n) | n <- ns])
{-
- Given a condition and a list, it checks whether the puzzle property is true for that list.
-
- E.g. dirValid 2 [3,2,1,4] is true, because only 2 squares can be "seen" from the list
- in this direction.
-
- E.g. dirValid 3 [4,1,2,3] is false, because only 1 square can be seen in this direction.
-}
dirValid _ [] = True
dirValid n [x,y]
| x == y = False -- boards with two of the same element are invalid
| n > 2 = False
| n == 1 = x > y
| otherwise = x < y
dirValid n lst@(x:y:xs)
| hasDuplicates lst = False
| n == 1 = (x > y) && (dirValid 1 (x:xs))
| x < y = dirValid (n - 1) (y:xs)
| x > y = dirValid n (x:xs)
---------------------------------------------------------------------
---------------------------------------------------------------------
-- FUNCTIONS TO GENERATE A PRUNED LIST OF N x N BOARDS---------------
{-
- Helper to generate the pruned list of all valid boards of size n x n
-}
genPrunedBoards :: Integral a => a -> [[[a]]] -- note: a single board has type [[a]]
genPrunedBoards n = pruneCols (genBoards n n [])
{-
- Helper to getPrunedBoards - filters a list for only boards with valid columns.
-}
pruneCols :: Integral a => [[[a]]] -> [[[a]]]
pruneCols boards =
filter noDupCols boards
{-
- Helper to pruneCols - returns true if all columns of a board are valid
e.g. this board:
| a | b | c |
___|___|___|___|___
l | 1 | 2 | 3 | d
___|___|___|___|___
k | 2 | 3 | 1 | e
___|___|___|___|___
j | 3 | 1 | 2 | f
___|___|___|___|___
| i | h | g |
| | | |
is valid, since a number is not repeated in a column, whereas:
| a | b | c |
___|___|___|___|___
l | 1 | 2 | 3 | d
___|___|___|___|___
k | 2 | 3 | 1 | e
___|___|___|___|___
j | 1 | 3 | 2 | f
___|___|___|___|___
| i | h | g |
| | | |
is not, since 3 is repeated in column b and 1 is repeated in column a.
-}
noDupCols :: Integral a => [[a]] -> Bool
noDupCols board =
not (or (map hasDuplicates (getAllCols board)))
{-
- generates a list of possible n x n boards, completely pruned row-wise but
- only partially pruned column-wise.
-}
genBoards :: Integral a => a -> a -> [[[a]]] -> [[[a]]]
genBoards n 0 acc = acc
genBoards n c [] = genBoards n (c-1) (genChildBoards n [])
genBoards n c acc =
foldr (++) [] (map (genChildBoards n) (genBoards n (c-1) acc))
{-
- Helper to genBoards, generates a list of all child boards for a given board,
- partially pruned.
-}
genChildBoards :: Integral a => a -> [[a]] -> [[[a]]]
genChildBoards n board =
[x:board | x <- permutations [1..n], not (x `elem` board)]
---------------------------------------------------------------------
---------------------------------------------------------------------
-- MISC HELPER FUNCTIONS --------------------------------------------
{-
- helper to check if a list has duplicates
-}
hasDuplicates :: Eq a => [a] -> Bool
hasDuplicates [] = False
hasDuplicates (x:xs) = (x `elem` xs) || (hasDuplicates xs)
{-
- Helper to get a list of all columns from a given board
-}
getAllCols board = [(getCol n board) | n <- [0..((length board)-1)]]
{-
- Helper to get a single column from a board as a list of int
-}
getCol n [] = []
getCol n board =
((head(board))!!n):(getCol n (tail(board)))
---------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------
----dear god, make this a module
--interactive version of project
--start by creating main menu
main = do
putStrLn $ "Hi, welcome to the Kingdom of Zed Game and Solver"
putStrLn $ "There are three options."
putStrLn $ "1. Play a game of KOZ"
putStrLn $ "2. Give a set of clues, and have the solver find the solution for you"
putStrLn $ "3. Exit"
choice <- getLine
if(choice == "1" || choice == "2") then (startup choice) else (putStrLn $ "Exiting...")
startup choice = do
putStrLn "Please enter n, the max value. n should be at least 2"
p <- getLine
let n = head (readNumbers p)
if(n < 2) then (return ()) else do
--convert n to a number
putStrLn $ "Your max value is " ++ (show n)
putStrLn $ "Enter the given clues now, in the expected format."
putStrLn $ "Enter each value with a space between them, ie for a n=3 board: 1 2 3"
putStrLn $ "Enter the first clue, for the north side"
nClueUP <- getLine
let nClue = readNumbers nClueUP
putStrLn $ "Enter the second clue, for the east side"
eClueUP <- getLine
let eClue = readNumbers eClueUP
putStrLn $ "Enter the third clue, for the south side"
sClueUP <- getLine
let sClue = readNumbers sClueUP
putStrLn $ "Enter the fourth clue, for the west side"
wClueUP <- getLine
let wClue = readNumbers wClueUP
let clueList = [nClue] ++ [eClue] ++ [sClue] ++ [wClue]
if(not (validityCheck n clueList)) then (return ())
else do
if(choice == "1") then (do
playGame n clueList (generateEmptyBoard n))
else (do
let soln = zed (listToTuple clueList)
putStrLn $ (printMap clueList soln)
)
{-} if (not (validityCheck n clueList)) then (return ()) else (do
if (choice == "1") then (do playGame n clueList (generateEmptyBoard n))
else (do (zed (listToTuple clueList))) -}
playGame n clueList board = do
putStrLn $ (printMap clueList board)
putStrLn $ "What cell would you like to modify?"
putStrLn $ "Note: the cell position is based on 0 based indexing, in format 'r c'"
putStrLn $ "If you would like the top, left-most cell the address is '0 0'"
address <- getLine
let row = (head (readNumbers address))
let col = (last (readNumbers address))
if(not (validAddress row col n)) then (do
putStrLn $ "Invalid Address."
playGame n clueList board) else do
putStrLn $ "What value would you like to change it to?"
putStrLn $ "Note: the value must be between 1 and n"
value <- getLine
let val = head (readNumbers value)
if(val < 1 || val > n) then (do
putStrLn $ "Invalid Value."
playGame n clueList board)
else do
let newBoard = changeCell row col board val
if(not (isFull newBoard)) then (do
putStrLn $ "Your point has been modified."
playGame n clueList newBoard)
else do
if(isBoardValid (listToTuple clueList) newBoard) then (do
putStrLn $ "You have reached a valid solution! Congratulations!"
putStrLn $ "Add a function that gives you to print the solution three different ways")
else do
putStrLn $ "Unfortunately, this is not a valid solution."
putStrLn $ "Try changing up some of your values."
playGame n clueList newBoard
--isBoardValid
--essentially just a renamed version of elemQtoXList but I thought the specific name
--made the program more readable
changeCell row col board value = elemQtoXList row col value board
listToTuple [a,b,c,d] = (a,b,c,d)
checkValid n clueList board = True
--checks the validity of an address
validAddress row col n = if ((row >= 0) && (row < n) && (col >= 0) && (col < n)) then True else False
-- if ((length firstClue) /= n) then putStrLn "fuck." else putStr "nisu."
rInt :: String -> Int
rInt = read
generateEmptyBoard n = generateEmptyBoardH n n
generateEmptyBoardH n 0 = []
generateEmptyBoardH n acc = (generateEmptyList n):(generateEmptyBoardH n (acc-1))
generateEmptyList 0 = []
generateEmptyList n = 0:(generateEmptyList (n-1))
readNumbers str = map rInt (words str)
--check for correct number n and each value is 1-n
validityCheck n lol = (correctNoVal n lol) && (correctValRangeLOL n lol)
--check to make sure the
correctNoVal n [] = True
correctNoVal n lol
| (length (head lol)) == n = correctNoVal n (tail lol)
| otherwise = False
correctValRangeLOL n [] = True
correctValRangeLOL n lol
| correctValRange n (head lol) = correctValRangeLOL n (tail lol)
| otherwise = False
--check to make sure each value in a list is between 1 and n
correctValRange n [] = True
correctValRange n list
| (head list) < 1 = False
| (head list) > n = False
| otherwise = correctValRange n (tail list)
--function: input graph, output picture to screen
--min graph is n =1
--clues:
--zedToScreen = do
--the way things are printed:
--spaces with top clue then spaces
--1st piece of left clue, a space and a | then print row1 of the map then 1st piece of right clue
--do this until the end of n
--then add the last clue to the bottom
--map to output string
--mtos clues zedMap =
-- topline ++ (printRows clues zedMap) ++ bottomline
--make a list of ints into a list of strings
{-
A B C
-------
L |A B C| D
K |D E F| E
J |G H I| F
-------
I H G
-}
fn1 clues = [(reverse (last clues))] ++ [(head (tail clues))]
rmvHeadClues clues = [(tail (head clues))] ++ [(tail (last clues))]
--below prints a board2
printMap clues board = " " ++ (intListToStr (head clues)) ++ "\n"
++ (middleSectionStr clues board) ++ " " ++ (reverse (intListToStr (clues!!2))) ++ "\n"
--go until board is []
middleSectionStr clues [] = ""
middleSectionStr clues board = middleSectionStrh ([(reverse (last clues))] ++ [(head (tail clues))]) board
middleSectionStrh clues [] = ""
middleSectionStrh clues board = (intSB (head (head clues))) ++ (intListToStr (head board)) ++ (reverse (intSB (head (last clues))))
++ "\n" ++ (middleSectionStrh (rmvHeadClues clues) (tail board))
--int list = map (\x -> (show x) ++ " ")
--printElements :: [String] -> IO ()
--printElements = mapM_ (\x -> putStr (x++" "))
--remove last character in a string
removeLast str = init str
--remove the last character of the last string in a string list
removeLastList strls = (init strls) ++[(removeLast (last strls))]
intToStrL intList = (removeLastList (map (\x -> ((show x) ++ " ")) intList))
--go till the list is empty
--i wanna write a function that takes a list of strings and combines it to one string
--to do this, we must add all the characters in the reverse order
cmbin lofst = cmbinh lofst []
cmbinh [] acc = acc
cmbinh lofst acc = cmbinh (init lofst) ((last lofst) ++ acc)
intListToStr intList = cmbin (intToStrL intList)
--take a string and append " |" to it
intSB inte = appendSB (show inte)
appendSB str = str ++ " |"
--return modified list, changing element q to value x
--0 indexing
elemQtoX q x [] = []
elemQtoX q x list = elemQtoXHelper q x 0 list
elemQtoXHelper q x acc [] = []
elemQtoXHelper q x acc list
| q == acc = x:(tail list)
| otherwise = (head list):(elemQtoXHelper q x (acc+1) (tail list))
--return modified list of lists, changing specified list-element (p) indx q to be x
elemQtoXList p q x listoflist = (elemQtoXListHelper p q x listoflist 0)
elemQtoXListHelper p q x listoflist acc
| (p == acc) = (elemQtoX q x (head listoflist)):(tail listoflist)
| otherwise = (head listoflist):(elemQtoXListHelper p q x (tail listoflist) (acc+1))
-----pulled from koz_solver.hs
{-
* Helper to see if the board is full.
* This function checks whether any entry is 0 .
* 0 is not a valid entry in KoZ, and can be used as a placeholder for a
spot on the board that hasn't been filled yet.
* The initial board will be completely populated with zeroes.
-}
isFull :: Integral a => [[a]] -> Bool
isFull [] = True
isFull (x:xs) = (isFullHelper x) && (isFull xs)
{-
* Helper function for isFull.
* Checks if a single row is full - a row is full if every element /= 0 .
-}
isFullHelper :: Integral a => [a] -> Bool
isFullHelper lst = foldr (\ e r -> e /= 0 && r) True lst