
A new sub-chunking strategy for fast netCDF-4 access 
in local, remote and cloud infrastructures. 

Cédric PENARD 1 cedric.penard@thalesgroup.com Flavien GOUILLON 2 flavien.gouillon@cnes.fr Xavier DELAUNAY 3 xavier.delaunay@eobytes.com Sylvain HERLÉDAN 4 sylvain.herledan@oceandatalab.com Pierre marie BRUNET 2 pierre-marie.brunet@cnes.fr
1 Thales Services Numériques, Labège France ; 2 CNES DTN/CD/AR, Toulouse, France ; 3eobytes, Ramonville-Saint-Agnes France ; 4 OceanDataLab, Locmaria-Plouzané, France

INTRODUCTION
With the predominance of cloud data storage, evaluating NetCDF performance on cloud infrastructures is essential.
In this work, we propose a novel approach that was designed to improve the access to time series from native NetCDF files in the cloud.
The advantage of our approach is that it keeps existing data as they are without requiring any reformatting. The idea is to reduce the amount of data read from the NetCDF file
when accessing a time series. To do this, our method creates virtual sub-chunks that can be read independently.
This novel approach called chunkindex involves indexing data within compressed NetCDF chunks, enabling extraction of smaller compressed data portions without reading
the entire chunk. This feature is very valuable for accessing time series or for extracting small amounts of data from datasets with large chunks. It also saves reading time,
particularly in scenarios of poor network connection such as those encountered onboard research vessels.
The objectives of this study are:
• To evaluate performance of NetCDF format on Posix and S3 file system through different use case.
• To improve performance of NetCDF via chunk indexing using chunkindex.

MATERIAL AND METHOD

In a NetCDF4 (and HDF5) file each variable
is chunked. Chunking is necessary to apply
data compression with the deflate algorithm.
Each chunk is read or written as a single
operation. To access to part of data lying
within a chunk, the chunk have to be entirely
loaded and uncompressed. If a file has big
chunks this operation could take time,
especially in some situation, like in time
series access.

Chunkindex directly accesses data inside a
chunk by using an index. The chunk is not
entirely read and uncompressed, this saves time
and reduces the amount of data transferred.
The counter part is the creation of the index
which increases the total size of the data, and
add some reading time.

On Posix On S3

The reading speed of a NetCDF file essentially depends on the use case and the structure of the file read. Chunkindex method works well when
getting time series from data with chunks divided by time steps. Results are mitigated when getting all data from a spatial frame.
In remote situation the best way to read a NetCDF file is to get only necessary data. In network degraded situation the H5py library is a good
solution to read NetCDF files, but chunkindex could be a suitable alternative to limit the amount of data downloaded. The universality, portability and
performance of the NetCDF format, even in cloud environments, mean that this format still has a bright future ahead.
A paper is in progress on the subject, and the next step is to explore the possibility of integrating the chunkindex library into the Kerchunk library.
Additionally, we would like to investigate the potential offered by the new ncZarr format developed by UCAR.

CONCLUSION AND PERSPECTIVES

Time series

Spatial frame

Chunk: a portion of data in the netCDF file that can be read or written as a single I/O operation. The data compression is
applied to full chunks.

Sub-chunk: a smaller portion of data that can be read using chunkindex approach.

How do we do that ?
1. We build an index that contains 32KB windows of compressed data at some points in the chunk (eg zran index points 1

to 4). The 32KB windows are the decompression context for the deflate algorithm. They are necessary to start the
decompression from these intermediate points;

2. We read from the index the 32KB window of the index point that lies just before the data we want to extract (eg. point 3);
3. We initialize the decompression from this index point 3;
4. We decompress the sub-chunk to retrieve the data we need.

DEFINITIONS

Abstract:

Contact:

credit UCAR unidata

credit UCAR unidata

s_on : shuffle filter on
s_off : shuffle filter off

The chunkindex 
library enables a 
reduction in the 
amount of data 
read, thereby 
decreasing the 
reading time.

The chunkindex 
library works well 
with the fs_s3 
library to directly 
access data 
stored on S3.

With chunkindex 
library, reducing 
the amount of 
data read saves 
time on network 
requests, despite 
the reading of the 
index file,

Reading the index 
file incurs a cost 
in terms of 
reading time with 
the chunkindex 
library.


