
Beyond Federated Learning decentralised learning
on the edge

Quinten van Eijs
Delft University of Technology

Delft, The Netherlands
J.A.Pouwelse@tudelft.nl

Johan Pouwelse
Delft University of Technology

Delft, The Netherlands
J.A.Pouwelse@tudelft.nl

Abstract—

Index Terms—Decentralized learning, P2P, Information Re-
trieval.

I. INTRODUCTION

In the current digital era, artificial intelligence (AI) has
become a critical component of search and recommendation
systems, altering the manner in which we engage with the
extensive data available online. Consider the task of searching
through a vast collection of YouTube videos using queries that
necessitate an exact match of the title, author, or other criteria
that are straightforward for machines to index. Such tasks are
ideally suited for a relational database utilizing a language
such as SQL. However, when it comes to more nuanced
queries like ”romantic music,” simple similarity metrics based
on the number of shared words between phrases are insuffi-
cient. For example, the query ”climate change” is semantically
closer to ”global warming” than to ”climate control,” despite
not sharing any words with the former and sharing one word
with the latter. AI’s role is crucial in enhancing our ability
to comprehend and cater to user preferences across various
platforms, including Spotify, TikTok, Instagram, and YouTube,
in a dynamic and complex manner.

By transforming real-world entities such as text, images,
and audio into mathematical representations called vector
embeddings, we can capture the nuanced meanings and rela-
tionships within the data, enabling more precise and context-
aware comparisons. For instance, a song’s audio features can
be represented as a high-dimensional vector, allowing for
the calculation of similarity between songs based on their

audio characteristics. This approach, known as embedding-
based search, is essential for answering queries that require
semantic understanding rather than simple indexable prop-
erties. By training machine learning models to map both
queries and database items into a common vector embedding
space, the distance between embeddings reflects their seman-
tic similarity, with similar items positioned closer together.
Identifying closely positioned items, also referred to as the
nearest neighbor problem, is a well-studied issue in computer
science. Many approximate nearest neighbor (ANN) search
algorithms have been developed to efficiently find the most
similar vectors in high-dimensional space. These algorithms
are designed to provide fast and accurate search results,
making it feasible to handle the vast and complex datasets
typical in modern AI applications. The ann-benchmarks shows
results of different ANN algorithms in this area: Google has
developed ScaNN(Scalable Nearest Neighbor), Facebook has
created FAISS, and Spotify has implemented Annoy. These
systems comes with challenges, particularly around privacy
and data management. Training embedding-based search AI
models often requires the collection of vast amounts of per-
sonal data, raising significant privacy concerns. The enormous
cost of datacenters means that only huge Big Tech companies
can typically afford such infrastructure. As a response to these
challenges, decentralized learning[?] paradigms are emerging
as a promising alternative. These paradigms offer superior
privacy, security, and scalability by distributing the learning
process across multiple nodes, thereby reducing the reliance on
centralized data collection and processing. However, federated
learning, one of the most well-known decentralized learning[?]
paradigms, still has the drawback of needing to aggregate
model updates to a central server, which coordinates the
training process across distributed nodes. Consequently, it
fails to fully achieve the defining feature of the internet of
fully decentralized control. The federated learning technique
cannot deliver the true decentralized autonomy envisioned for
distributing AI models.

Developers can now perform inference on edge devices
independently, without requiring continuous communication
with central servers, thanks to the advent of TensorFlow
Lite and the growing computational power of mobile de-
vices. Furthermore, to augment local processing capabilities,

1

Google’s open-source ScaNN library can be incorporated
into TensorFlow Lite models. In this research, we aim to
decentralize the Internet by exploring the feasibility of creating
a decentralized Spotify-alternative with real Web3 Youtube
playback. We leverage a ScaNN-powered AI model and a
peer-to-peer architecture to develop ”Beyond Federated”, a
solution in which all participants are autonomous and self-
sovereign, collaborating as equals. Each participant possesses
equal power and supports all features, with no participant tem-
porarily acting as a leader or coordinator. This decentralized
approach ensures that the power and control over the learning
process are evenly distributed, mitigating the risks associated
with centralization and enhancing the robustness and resilience
of the system.

Our research contributions are the following:
1) Enabling collaborative learning: Developing robust

communication protocols and efficient algorithms for
peers to share data and model updates, fostering the
collective refinement of knowledge and leading to better,
more consistent models across the network.

2) Facilitating dynamic embedding learning: Implement-
ing mechanisms for peers to dynamically adjust vector
representations based on their local data and interactions,
resulting in contextually relevant and personalized mod-
els that adapt to the evolving data landscape.

3) Ensuring privacy-preserving learning: Exploring
privacy-preserving techniques like federated learning
and homomorphic encryption to allow peers to con-
tribute to the learning process without directly sharing
sensitive data, thereby addressing privacy concerns in-
herent in decentralized learning.

4) Robustness to node failure: Gracefully handles the
failure of neighboring peers.

The rest of the paper is organized as follows: Section ??
provides an overview of the background, Section ?? details
the design and implementation of the proposed system, Sec-
tion ?? presents the experimental results and evaluation, and
Section ?? concludes the paper with future work directions.

II. PROBLEM DESCRIPTION

A common method to measure YouTube embedding similar-
ity is through their inner product, leading to maximum inner-
product search (MIPS). Given the potential size of databases,
which can range from millions to billions of items, MIPS often
becomes the computational bottleneck, making exhaustive
search impractical. Therefore, we employed SCaNN, which
trades off a bit of accuracy for significant speed improvements
over brute-force search. SCaNN performs as a state-of-the-art
solution for MIPS according to the ann-benchmark, focusing
on compressing database items and allowing for the approxi-
mation of their inner product in a fraction of the time required
by brute-force methods.

This compression is achieved through a novel learned
quantization approach, which involves training a codebook
of vectors from the database to approximately represent its

elements. Once the codebook is trained, a search query can be
compressed similarly, and the inner product between the query
and each database embedding can be computed efficiently.
However, a database of millions to billions of items would still
require an exhaustive search across all database embeddings
to find the nearest neighbor.

To address this, SCaNN clusters database embeddings into
k clusters based on their distance using k-means clustering to
reduce the search space. This approach requires all the data to
be available and retrained to optimally cluster it into k clusters.
In centralized learning, this is not a problem since all the data
is available in one place. However, in our scenario, data is
distributed across multiple devices, and we need to update the
model with new data without requiring the entire dataset to be
retrained.

Given the limited computational resources of edge devices,
and the privacy constraints it would be infeasible to retrain
the entire dataset. Therefore, the goal of our system is not
only to retrieve the top approximate nearest neighbor but
also to learn and retrieve newly added YouTube embeddings
efficiently. Additionally, the challenge extends to learning new
embeddings based on data from other nodes in the network. To
facilitate this, anonymous clicklog data is shared across nodes,
allowing for collaborative learning without compromising user
privacy. This shared clicklog data enables the system to con-
tinually improve its understanding of user preferences and be-
haviors, ensuring that the embeddings are constantly updated
and refined based on the latest interactions. This approach
leverages the collective knowledge of the network, enhancing
the overall performance and accuracy of the decentralized
YouTube search system.

III. ARCHITECTURE OF BEYOND FEDERATED

In this section, we present an overview of the Beyond
Federated system architecture. Beyond Federated is a proof of
concept designed to demonstrate the feasibility of decentral-
ized search and retrieval machine learning models that respect
user privacy. This proof of concept includes a functional
android application aimed at creating the first decentralized
Spotify alternative, featuring Web3 YouTube playback inte-
gration. Our implementation focuses on YouTube content to
define the scope, but the underlying architecture is versatile
enough to handle any type of content. The app consists of
four components which include the user interface to let the
user interact with the application, the actual pre-trained search
model containing all the learned embeddings, TensorFlow Lite
Support a library to deploy .tflite models onto the mobile
devices and lastly our peer-to-peer gossip network component.

A. User Interface

The Beyond Federated user interface features a simple and
practical design, allowing users to search for YouTube videos,
which are displayed in a scrollable list. This list dynamically
updates based on events triggered when the text box content
is modified. Users can also play a video from the list by
clicking on a list item, which opens a new page that loads

2

the YouTube video based on its videoID into the Android
native video player. This player utilizes YouTube’s own web
player to ensure 100% compliance with YouTube’s terms of
service. Additionally, users can insert new YouTube videos by
providing the title, author, and video URL via the ’plus’ icon
located in the bottom right corner. Figure [?] illustrates the
three different screens of the Beyond Federated application.

B. TensorFlow Model

Each distributuion of the application contains a pretrained
version of the model to allowing the user to already start
searching for content when the application is installed. The
model has two important responsibilities. At first it will
transform the search query into a high dimensional vector
which is called an embedding. This is done through using
pretrained models specifiically designed for this task. The
model Secondly it contains our pretrained ScaNN artifacts.

1) Text Embedding Models: Careful consideration must be
given to the choice of text embedding model, as it significantly
impacts the accuracy of the search model. The text embeddings
define the vector space where closely positioned vectors are
identified, directly influencing the relevance and precision of
search results. Given that our system focuses on YouTube
content, it is crucial that the text embeddings effectively
capture the semantics of the search queries. We utilize the titles
and authors of YouTube videos since users commonly search
for music on YouTube by song title and artist. Incorporating
more attributes such as genre, intensity or video description
in future research could further enhance search results.

Our embedding data setup is shown in Table I. This configu-
ration allows the embeddings to search for the artist and title of
the YouTube video and return the necessary metadata for our
user interface. This setup ensures that users receive relevant
and precise search results based on their queries, enhancing
their overall experience.

Embedding Metadata (JSON Formatted)
{artist} {title} artist , title, youtubeID

TABLE I: Overview of different pre-trained models and their
trained dataset.

TensorFlow supports various embedding models, including
BERT-based models and Universal Sentence Encoder (USE)
models. The key differences between these models lie in their
design and application. USE produces a single embedding for
an entire sentence, making it efficient for tasks requiring a
general understanding of sentence semantics. It is designed
to work out-of-the-box for many applications without needing
task-specific adjustments. In contrast, BERT generates fine-
grained, context-sensitive embeddings for each token in a
sentence, with the ability to aggregate these embeddings for
sentence-level tasks using the [CLS] token. This makes BERT
more suited for applications requiring detailed contextual
information and often requires fine-tuning to achieve optimal
performance for specific tasks.

Additionally, custom text embedding models are sup-
ported as long as they have an input text tensor of kT-
fLiteString and at least one output embedding tensor (kTfLi-
teUInt8/kTfLiteFloat32). This flexibility allows for the inte-
gration of specialized models tailored to specific requirements,
enhancing the system’s adaptability and effectiveness. While
large embedding models are known to provide more accu-
rate results, they also require more computational resources,
making them less suitable for edge devices. Therefore, the
choice of embedding model should strike a balance between
accuracy and efficiency, ensuring optimal performance on
mobile devices.

Training ScaNN configuration After receiving em-
beddigns from our text embedding model, we quan-
tize the embeddings using the ScaNN algorithm.
Quantization therefore requires a codebook to be
trained on the embeddings. The codebook is trained
by subdividing the embeddings into smaller subvec-
tors, applying k-means clustering to create code-
books for each subvector set, and encoding the
original vectors into compact representations using
these codebooks.

Both the codebook and the clustered partitions are stored in
the format of a LevelDB which is a high performant but simple
key-value storage. This index is stores inside the metaadata of
the model in format of a flatbuffer.

After extensive research the index is build as follows:
By using these diverse datasets, we aim to thoroughly

evaluate the system’s robustness, scalability, and ability to
manage various types of metadata. This approach ultimately
contributes to our goal of developing a fully decentralized
search and recommendation AI system.The datasets are
summarized in Table II.

For training the ScaNN artifacts, we use the following
parameters to ensure efficient and accurate similarity search:

• Number of Clusters/Partitions (σ): The number of
clusters or partitions is determined by σ =

√
N , where N

is the total number of items in the dataset. This balances
search speed and accuracy.

• Distance Measure: We use the dot_product method
to measure the distance between embedding vectors. The
negative dot product value is computed to ensure smaller
values indicate closer proximity.

• Tree Structure (ω): The number of partitions to search
through, which reduces computational load while main-
taining high search accuracy.

• Quantization (score ah): Float embeddings are quan-
tized to int8 values, retaining the same dimensionality.
This reduces the memory footprint and speeds up the
search process without significantly compromising preci-
sion.

• Dimensions per Block: This parameter specifies the
number of dimensions in each Product Quantization
(PQ) block. For example, a 12-dimensional vector with

3

(a) YouTube Search (b) Insert new YouTube video (c) YouTube playback on selected
video

Fig. 1: Screenshot of Beyond Federated application userinterface

Fig. 2: Visual representation of SCaNN.

dimensions per block set to 2 results in six 2-dimensional
blocks. This parameter is set to 1 for all datasets.

• Anisotropic Quantization Threshold: This parameter
penalizes quantization errors parallel to the original vec-
tor differently than orthogonal errors, with a recom-
mended value of 0.2.

• Training Sample Size: The number of database points
sampled for training the K-Means algorithm for PQ
centers.

• Training Iterations: Specifies the number of iterations
to run the K-Means algorithm for PQ, with a default of
10 iterations for all datasets.

C. TensorFlow Lite Support

TensorFlow Lite Support is a library that enables the deploy-
ment of TensorFlow Lite models on edge devices. It provides
APIs for loading and running TensorFlow Lite models, allow-

ing for running inference on the models stored locally. The
library is written in C++ and uses Bazel for cross-platform
building, supporting Java, C++, and Swift. TensorFlow Lite
Support is designed to be lightweight and efficient, making
it suitable for deployment on mobile and IoT devices with
limited computational resources. While ScaNN is actively
developed as seperate repository by google it only provides
a python interface. However TensorFlow Lite Support has
included an older version of ScaNN into their library. As stated
by their documentation TensorFlow Lite Support includes a
simplified version of ScaNN that requires less resources to
run and only for inference. There’s no support for K-Means
partitioning training and quantization training.

TensorFlow Lite utilizes a pretrained codebook and parti-
tions, which are included in the model as a LevelDB index.
This index is mapped directly using the index from the file
as an immutable table. Consequently, a LevelDB instance is
available in TensorFlow Lite, which is then accessed through
SCaNN.

After embeddings are generated, the codebook is
used to calculate the closest partitions. The contents of
these partitions, which are hashed embeddings, are then
fetched. These hashed embeddings are stored as integer
values, representing their large floating point values, such
as [0.21021,−0.11321110, . . . ,Embedding Dimension],
in a more compact form like
[2, 213, 12, . . . ,Embedding Dimension]. This approach
reduces storage space and allows for fast hash comparisons
to determine the closest matches.

Additionally, LevelDB stores metadata keys, which can
be retrieved after finding the closest hashes. This allows
the system to fetch the corresponding metadata efficiently.
The combination of these techniques ensures that TensorFlow

4

Lite can perform quick and accurate similarity searches in a
resource-efficient manner, leveraging the power of pretrained
codebooks and partitions stored in LevelDB.

Fig. 3: Beyond Federeated Search model Call Graph.

The limitation of not being able to support K-mean parti-
tioning and quantinazation training limitation occors because
when on forehand of training k-means clustering it is required
to specify the number of clusters. Inserting new clusters
would require re-partitioning possibly multiple partions. This
is computationally expensive and would require a lot of
resources. Besides that during runtime the LevelDB Table uses
an read-only inmutable table for better performance however
this makes it not possbile to insert new items.

Since the training of new embeddings is not supported we
continue our research by developing a custon a Non-Perfect
Insert (NPI) method. The NPI method involves embedding
the query, quantizing it using the pre-trained codebook, and
appending it to the closest cluster. By doing so, we can sim-
ulate an dynamically enviroment. It also explores potentially
research areas to improve on for further work. This approach
enables us to evaluate the performance of the system under
different conditions and analyze the impact of non-perfect
inserts on search performance. By testing this method, we

aim to understand how the system copes with new data and
to ensure it maintains a high level of accuracy and efficiency
despite the constraints imposed by non-dynamic scalability.

For handling non-perfect inserts, we employ the same model
inference to generate an embedding from the newly inserted
title and artist. This embedding is then used to find the closest
partition. Given that our table is immutable, direct insertion of
new embeddings is not possible. Instead, we follow a specific
process to incorporate the new data:

1) Generate Embedding: We use the existing model to
generate an embedding for the new title and artist.

2) Find Closest Partition: This embedding is then used to
determine the closest partition based on the pretrained
codebook.

3) Fetch and Update Partition: Since the table is im-
mutable, we fetch the entire partition that the new
embedding would belong to.

4) Insert New Embedding: The new embedding is inserted
into the fetched partition.

5) Create New Index: A new index is created to reflect
the updated partition.

6) Overwrite Mapped File: The nmapped file is overwrit-
ten with the new index and partition data.

7) Reload File: The entire file is reloaded to ensure the
system can query the model using the newly inserted
data.

This process, though requiring the reloading of the whole
file, allows the system to update and query new data effec-
tively. By reloading the file after updating the index, we ensure
that the system can handle queries with the newly inserted
embeddings, maintaining the integrity and accuracy of the
decentralized YouTube search system.

D. Gossip Network Protocol

Beyond Federated is built on top of the Tribler SuperApp,
leveraging its decentralized peer-to-peer network to ensure
secure communication between users. This component enables
robust, decentralized interactions through the IPV8 protocol,
which facilitates secure data exchange.

In our decentralized YouTube search system, each node
operates as a self-sovereign entity, maintaining control over
its own data and operations. We employ the IPV8 protocol
for communication between nodes, which ensures secure and
efficient peer-to-peer interactions.

The self-sovereign nature of each node allows for indepen-
dent operation and decision-making. When nodes disconnect
from the network, they simply do not receive model updates.
However, the system remains robust and functional due to the
decentralized architecture.

Each time a user clicks on a search result, the clicklog
entry is created and initially stored new data using our non
perfect insert method. The gossip protocol then takes over,
periodically sharing this new clicklog entry with neighboring
nodes. These neighbors, in turn, propagate the information
to their neighbors, and so on, ensuring that the clicklog data
eventually reaches all nodes in the network.

5

Fig. 4: The model structure in which an NPI is inserted.
The NPI is responsible for inserting new items into the index
without retraining the entire dataset.

The clicklog data is gossiped around the network, enabling
the system to continue sharing information even if some
nodes go offline. This gossiping mechanism ensures that the
collective knowledge is maintained and disseminated across
the network, supporting continuous learning and adaptation of
the model.

IV. EXPERIMENTS AND EVALUATION

In this section, we present the experiments and evaluations
conducted to assess the system’s potential as the first decen-
tralized search and recommendation AI system. We will begin
by discussing the datasets used for training the pre-trained
model, followed by an explanation of the evaluation metrics.
Finally, we will present and analyze the experimental results
to evaluate the system’s performance.

A. Experiment Setup

To ensure the experiments closely mirrored real-world con-
ditions, they were conducted on an Android phone with the
following specifications: Processor: Qualcomm Snapdragon
625, Cores 8 cores, Clock speed: 2GHz, Android 8, RAM
4GB, Storage: 64GB. When loading our model we allocate a
maximum of 4 threads to perform model inference and ScaNN.
For the model pretraining phase, we utilized Kaggle[1] note-
book runs which contain the following specifications: CPU: 4
vCPU cores (Intel Skylake), RAM 30GB of RAM, Storage:
73.1GB.

B. Datasets, Embedders and Pre-trained Models

The main dataset used during the experiments is the Spotify
and YouTube dataset from kaggle[2], which contains 20,230
songs from 2,079 artists. The dataset is released under the
CC0: Public Domain license which is especially important
when running our network experiment distributing contents
of the dataset across the network. Before using this dataset, it
was cleaned to remove redundant YouTube-specific extensions
from the titles, such as ”Official video,” ”music video,” and
”lyrics video,” to ensure that our embedding space is not
negatively affected. Often the titles of YouTube videos contain
the artist’s name, so the data was cleaned to remove the artist
name from the title. This ensures that the model learns the
semantic context of the title and artist separately.

Our second dataset, YouTube-Commons, is a large collec-
tion comprising 2,063,066 videos from 411,432 individual
channels. These videos are shared on YouTube under a CC-BY
license. The dataset predominantly features English-speaking
content, accounting for 71% of the original languages. This
extensive dataset tests the system’s scalability and performance
with a vast amount of data, providing insights into how well
the system handles large-scale decentralized information.

To embed the datasets and create our vector space, we
utilized two pre-trained models, not all embedder models are
suitable due to their requirement of running in an on-device
scenario. Therefore we train two models on the same Spotify
Youtube Dataset using both the Universal Sentence Encoder
(USE) and BERT. The basic Universal Sentence Encoder
is around 1GB in size and is not optimized for on-device
inference therefore we will be using a retrained USE from
colab[3]. This results in an 27.3MB model being able to
encode embeddings in 6ms. BERT does have a mobile version
called MobileBERT we will specifically use mobilebert qa
which has 4.3x smaller and 5.5x faster than BERT-Base while
achieving competitive results, suitable for on-device scenario
as its 5.83MB.

The details of the pre-trained models and their respective
datasets are summarized in Table II.

1) Metrics: The performance of the system will be evalu-
ated using two primary metrics: speed and accuracy.

The speed of the system is assessed through execution time,
measured in milliseconds (ms), and memory usage, measured
in megabytes (MB). The accuracy of the system is evaluated
using the Recall metric. Recall is a crucial metric in the
evaluation of information retrieval systems, including search
engines and recommendation systems. It is defined as the
ratio of relevant items retrieved by the system to the total
number of relevant items in the dataset. Mathematically, recall
is expressed as:

Recall =
Number of relevant items retrieved

Total number of relevant items
(1)

Recall is particularly important in contexts where missing
relevant items can have significant consequences resulting
in user dissatisfaction due to the inability to find pertinent

6

Embedder - Dataset Clusters Embedding Dimension Video’s Model Size

BERT - Spotify and Youtube 140 100 20,230 9.21MB

USE - Spotify and Youtube 140 128 20,230 31.3MB

USE - YouTube-Commons 1450 128 2,063,066 458MB

TABLE II: Overview of different pre-trained models and their trained dataset.

YouTube video’s. By measuring both speed and recall, we can
comprehensively evaluate the performance and effectiveness
of the system, ensuring it meets the desired criteria for both
efficiency and accuracy.

C. Content Search on the Edge Experiment
The goal of this experiment is to provide a general overview

of the capabilities of Beyond Federated. In this initial test, we
issue a single query to the system and evaluate its results.

By starting with a query, we aim to understand the basic
functionality and effectiveness of our system’s search capa-
bilities. This approach allows us to identify any immediate
issues and establish a baseline for more complex, multi-
query scenarios in subsequent experiments. This preliminary
assessment helps in verifying that the core components of the
search mechanism are operating correctly and sets the stage
for more detailed performance evaluations and refinements in
future tests. Our query consists of the band name ”red hot
chili peppers” to retrieve the top 10 results from the Spotify
YouTube Trained Model.

table with results
1) Results: The search query results for the band ”Red

Hot Chili Peppers” in the Spotify YouTube Trained Model
are detailed in Table 1. The search execution time was re-
markably efficient, clocking in at just 37 milliseconds. This
rapid performance is maintained even with the retrieval of
additional items, as the distances are computed within the six
closest clusters to the original query. In terms of accuracy, 9
out of the top 10 results are directly relevant to the search
query, yielding a recall rate of 90%. However, the tenth result
is from a different band, ”The Beach Boys,” which does
not align with the intended query. This discrepancy may be
explained by the absence of the ”Red Hot Chili Peppers
- Snow (Hey Oh)” video, which was located at the 14th
place with a distance of -0.68120 to our search query. The
sentence encoder model, designed to capture the semantic
context of queries, likely associated ”The Beach” with ”Hot”
conceptually, while ”Snow,” being contradictory to ”Hot,” in
the missing entry’s title may have positioned its vector further
away in the semantic space. This outcome underscores the
system’s capability to interpret the semantic context of queries
and retrieve items based on the learned embeddings, though
it also highlights areas for potential improvement in handling
nuanced semantic relationships.

D. Random keyword inference on different Embedders Exper-
iment

In this experiment, we aim to evaluate the impact of differ-
ent encoder models when our vector space is trained. We will

compare the performance of the Universal Sentence Encoder
(USE) and BERT models in terms of speed and accuracy. The
experiment will involve issuing different type of queries to the
system using both encoder models and analyzing the results
to determine the most effective model for our decentralized
search and recommendation system. We aim to evaluate the
effectiveness of the semantic embeddings by measuring the
system’s performance on a set of seven related queries. These
queries are designed to test various levels of specificity and
semantic understanding, ranging from exact matches to partial
and semantically altered queries. We are searching for the band
UB40 which consost of way less than the context given in
our first expirement. This band also has 10 YouTube videos
learned. The queries include:

1) Results: Analyzing the search times for different queries
using the Universal Sentence Encoder (USE) and BERT mod-
els reveals a significant difference in performance. The USE
consistently outperforms BERT in terms of speed, completing
all queries in approximately 38 milliseconds, compared to
BERT’s 85 milliseconds for the same queries. Despite this
difference, both models are capable of handling search queries
in real-time, demonstrating their suitability for time-sensitive
applications.

To further assess the impact of larger datasets, we trained
a model on the YouTube-Commons dataset. Interestingly, the
CPU time does not degrade significantly despite the increased
number of comparisons, as the system efficiently measures
distances to larger clusters. The results of this experiment are
summarized in Figure [?].

Assessing the recall in this example is somewhat complex
for both embedding models. Both models successfully retrieve
the correct video when queries include the full song title or the
combination of the artist’s name and the song title. However,
their performance diverges significantly with other types of
queries.

a) Band Name Only: When searching solely for the band
”UB40,” BERT finds two videos that do not include the title
”Red Red Wine,” whereas USE fails to retrieve any videos
including UB40 as the artist.

b) Partial Song Name: The results for the query ”Red”
differ between the models. USE predominantly retrieves
videos related to the color red, while BERT identifies videos
associated with red objects, such as roses. This indicates that
USE is more focused on color semantics, whereas BERT
captures a broader range of associations with the word ”red.”

c) Semantic Mistake: For the semantically incorrect
query ”Green Wine,” BERT’s results are influenced by the
term ”poison,” and it eventually returns the correct video in

7

Rank Distance Metadata
0 -0.92737 artist: Red Hot Chili Peppers, title: Can’t Stop, id: 8DyziWtkfBw
1 -0.92040 artist: Red Hot Chili Peppers, title: Otherside, id: rn YodiJO6k
2 -0.91266 artist: Red Hot Chili Peppers, title: Californication, id: YlUKcNNmywk
3 -0.90260 artist: Red Hot Chili Peppers, title: Dark Necessities, id: Q0oIoR9mLwc
4 -0.88711 artist: Red Hot Chili Peppers, title: Dani California, id: Sb5aq5HcS1A
5 -0.87163 artist: Red Hot Chili Peppers, title: Give It Away, id: Mr uHJPUlO8
6 -0.83989 artist: Red Hot Chili Peppers, title: By The Way, id: JnfyjwChuNU
7 -0.83138 artist: Red Hot Chili Peppers, title: Scar Tissue, id: mzJj5-lubeM
8 -0.78570 artist: Red Hot Chili Peppers, title: Under The Bridge, id: GLvohMXgcBo
9 -0.72377 artist: The Beach Boys, title: Good Vibrations, id: apBWI6xrbLY

TABLE III: Top 10-Results searching ”Red Hot Chili Peppers” in the 20K Spotify YouTube Trained Model.

Description Example
Full song name and band name ”UB40 Red Red Wine”
Band name only ”UB40”
Song name only ”Red Red Wine”
Partial song name ”Red”
Semantic mistake in the song name ”Green Wine”
Foreign language translation of the partial song name ”Vino tinto” (Spanish for ”Red Wine”)

TABLE IV: Examples of Song and Band Name Variations

the fourth position. In contrast, USE accurately returns the
correct video as the top result, demonstrating its robustness in
handling semantic errors.

d) Foreign Language Translation: The foreign language
query ”Vino tinto” does not perform well with either model,
which can be attributed to the dataset being in English and
the models being trained on English text. However, USE does
return related foreign titles, such as those by Vasco Rossi,
suggesting some degree of cross-linguistic capability.

2) Discussion: The results highlight several key observa-
tions about the performance and behavior of the USE and
BERT models. Both models don’t perform on relatively small
queries in which no real words are being used. USE’s speed
advantage makes it more suitable for real-time applications,
while BERT’s broader semantic understanding can be bene-
ficial in scenarios requiring nuanced context comprehension.
Both models show limitations in handling foreign language
queries, pointing to a potential area for future improvement.
Overall, these findings underscore the importance of selecting
the appropriate model based on the specific requirements
of the application, whether it be speed, recall, or semantic
understanding.

E. Non-Perfect Insert Experiment

In this experiment, we evaluate the system’s ability to handle
the insertion of new entries and measure the execution time
required for these operations. This is crucial for ensuring
the scalability and efficiency of the system as it updates its
database with new information. The experiment is designed
to demonstrate the basic functionality of single item insertion,
evaluate the system’s performance under a moderate load by
inserting 10,000 items, and conceptually assess the scalability
by estimating the performance for repeated insertions up to
one million times. When we add an new song we will be
using a random generated list of fantasy arists names and
title, inlcusing 2 random english words such as ”artist: Eternal
Ballad title: Crystal Phoenix”.

UB40
 R

ed
 R

ed
 W

ine
UB40

Red
 R

ed
 W

ine Red

Gre
en

 W
ine

Vino
 tin

to
0

20

40

60

80

100

S
p

ee
d

 (
m

s)

BERT 20K
USE 20K
USE 2M

Fig. 5: Measuring the search time for different queries using
the Universal Sentence Encoder and BERT models.

1) Results: The system successfully inserted a new item
into our YouTube Spotify dataset, resulting in a model size
increase of 876 bytes. The distance of the new item from the
original query was -2.26156, which is relatively uncommon
compared to other previously learned videos. The insertion
operation took 574 milliseconds to complete, with a RAM
usage of 16 MB. These results demonstrate the system’s ability
to efficiently handle the insertion of new items, even when they
do not perfectly match the existing dataset.

However, when inserting into the larger pretrained model,
which includes YouTube Common video items, we observed
an increase in both insertion time and RAM usage. This
bottleneck is due to the need to read, initialize, and overwrite
the entire index, which has a size of 458 MB. After writing
the new index, it is necessary to reinitialize the database to
enable searching.

Inserting approximately 8 new songs results in significant
differences, where the YouTube Commons 2M Dataset re-
quires an infeasible amount of time to rebuild the index for
each new entry. Since it is not necessary to search all insertions

8

directly, we also experimented with adding entries first and
rebuilding the index after all songs had been added. This
approach significantly reduced the insertion time.

We observed that batch processing of insertions followed
by a single index rebuild allowed us to manage the database
more efficiently. By delaying the rebuild process until after
all insertions, we reduced the cumulative time and resource
usage. For instance, when inserting 8 new songs in the larger
dataset, the rebuild time, though substantial, was offset by the
reduced frequency of rebuild operations, leading to a more
manageable system load.

This approach, while reducing the frequency of resource-
intensive operations, still faced challenges. Specifically, the
size and complexity of the dataset necessitated careful man-
agement of memory and processing power. Nevertheless, the
results indicated a clear benefit in handling multiple insertions
as a batch process rather than individually.

When adding 1,600 songs, we eventually observed that even
rebuilding a smaller index becomes slower. While the larger
dataset takes a bit longer to initialize, it still outperforms the
batch insert version of the non-perfect insert.

The performance gap widened as the number of insertions
increased. Inserting 1,600 songs individually into the larger
dataset required a significant rebuild time for each insertion,
cumulatively leading to substantial delays. However, by batch
processing these insertions, we managed to reduce the overall
time significantly. The larger dataset, with its more extensive
index, benefited from fewer rebuild operations, demonstrating
the efficiency of handling bulk insertions.

We also noted that the initialization time for the larger
dataset, although initially longer, did not scale linearly with
the number of insertions. This suggests that the system’s
architecture is capable of handling large-scale data more
effectively when optimized for batch processing. As the batch
size increased, the efficiency gains became more pronounced,
highlighting the importance of strategic insertion management
in maintaining system performance.

When adding 10,000 songs, the index size did not increase
substantially. However, the insertion process for 10,000 songs
still required 200 and 500 seconds, respectively, for the smaller
and larger datasets.

Inserting 10,000 songs into the system provided a compre-
hensive test of its scalability. Despite the relatively modest
increase in index size, the insertion time revealed significant
differences between the datasets. For the smaller dataset, the
process took approximately 200 seconds, reflecting a relatively
efficient handling of the bulk insertion. In contrast, the larger
dataset required around 500 seconds, underscoring the ad-
ditional complexity involved in managing a more extensive
index.

These results indicate that while the system can handle a
large volume of insertions, the efficiency is heavily dependent
on the dataset size. The larger dataset’s longer insertion time
can be attributed to the increased overhead in managing a more
complex index. However, the fact that the index size did not

grow significantly suggests that the system’s design is effective
in maintaining a compact and manageable data structure.

The experiment demonstrates the system’s capacity to man-
age the insertion of up to 10,000 new entries efficiently.
However, scalability remains a critical concern as the number
of insertions increases. To assess the potential of scaling up
to one million items, several factors need to be considered:

Index Management: As the number of entries grows,
the complexity and size of the index will increase. Efficient
index management strategies, such as hierarchical indexing or
partitioned indices, could mitigate the performance bottlenecks
observed with larger datasets. Additionally, optimizing the in-
dex rebuild process to handle bulk insertions more effectively
would be essential.

Memory and Processing Power: Handling a million en-
tries will require substantial memory and processing power.
Ensuring that the system can scale its resources dynamically
in response to increased load is vital. Implementing distributed
processing and leveraging cloud-based solutions could provide
the necessary scalability.

Batch Processing: The results indicate that batch processing
significantly improves performance. For one million items,
batch processing would need to be optimized further. Strate-
gies such as parallel processing of batches and incremental
indexing could help manage the load more effectively.

Next if we look at new queries from our updated index we
stated the following. The favoring of recently inserted songs
can lead to a significant decrease in the overall recall rate
of the system. As more items are inserted without retraining
the codebook, the likelihood of retrieving correct items di-
minishes. This trend suggests that the system’s effectiveness
in retrieving relevant and accurate entries will degrade over
time unless periodic retraining is implemented.

To maintain high recall rates and ensure that the retrieval
system remains accurate and effective, it is essential to con-
sider strategies for regular retraining of the codebook. This
will help in recalibrating the retrieval process and balancing
the influence of newly inserted songs with existing entries.

F. Decentralised content discovery and search Experiment

Our final experiment examines the entire end-to-end
pipeline of decentralised content discovery and search In this
section, we quantify the exact cost of content discovery and
decentralized search. Content discovery is based on a gossip
protocol, as illustrated by the network view available. We focus
on the Creative Commons YouTube dataset, which contains
videos that can be freely redistributed.

Our experiment centers on the core primitive of two random
peers exchanging discovered content and search results. The
search results are organized in a format known as a ClickLog,
which consists of pairs of ”Query, Clicked-YouTube-URL.”
One device in our experiment generates the ClickLog, while
the other device inserts these results into SCANN (Scalable
Nearest Neighbors).

To investigate the data exchange size, we set up two
devices to gossip a single ClickLog each second. This setup

9

0 50 100 150 200 250
Start Time (seconds)

0

2

4

6

8

E
nt

ry
 N

um
be

r

File 2M No Index Rebuild
File 20K No Index Rebuild
File 20K Index Rebuild
File 2M Index Rebuild

(a) Insert of 8 fantasy Youtube Items

0 200 400 600 800 1000 1200 1400 1600
Duration (seconds)

0

200

400

600

800

1000

1200

1400

1600

In
se

rt
 A

m
ou

nt

20K No Index Rebuild
20K Index Rebuild
2M No Index Rebuild

(b) Insert of 1600 fantasy Youtube Items

0 100 200 300 400 500 600
Duration (seconds)

0

2000

4000

6000

8000

10000

In
se

rt
 A

m
ou

nt

2M No Index Rebuild
20K No Index Rebuild

(c) Insert of 10K fantasy Youtube Items

20400 20600 20800 21000 21200 21400 21600 21800 22000
Number of Inserts

3.975

4.000

4.025

4.050

4.075

4.100

4.125

S
iz

e
(M

B
)

20K

(d) Index size growht on 10K fantasy Youtube Items

Fig. 6: Results of Non-Perfect Insert

Rank Distance Metadata
0 -1.64961 artist: Eternal Ballad title: Crystal Phoenix, id:abc123456
1 -1.53666 artist: Crystal Ballad, title: Phoenix Moonlight, id:abc123456
2 -1.53307 artist: Mystic Symphony, title: Ember Mystic, id: abc123456
3 -1.50501 artist: Moonlight Ballad, title: Mystic Eternal, id:abc123456
4 -1.49494 artist: Phoenix Ballad, title: Eternal Crystal, id:abc123456
5 -1.47767 artist: Whisper Ballad, title: Crystal Mystic, id:abc123456
6 -1.47767 artist: Starlight Ballad, title: Phoenix Eternal, id:abc123456
7 -1.46832 artist: Moonlight Ballad, title: Moonlight Phoenix, id:abc123456
8 -1.45609 artist: Moonlight Ballad, title: Shadow Moonlight, id:abc123456
373 -0.94673 artist: Red Hot Chili Peppers, title: Under The Bridge, id: GLvohMXgcBo

TABLE V: Top 10 and selected additional results for the query ”Red Hot Chili Peppers Under The Bridge” in the Spotify
YouTube Trained Model + Fantasy Youtube Entries.

10

helps us determine the volume of data exchanged and assess
the feasibility of implementing Beyond Federated Learning.
Understanding the data requirements is crucial for ensuring the
efficiency and scalability of the decentralized search process.
By quantifying the data exchanged during content discovery
and search, we can better understand the implications for
network load and system performance.

0 20000 40000 60000 80000 100000
Time (seconds)

0

5

10

15

20

25

To
ta

l M
es

sa
ge

 S
iz

e
(M

B)

Transfered Clicklog Size (MB)

Fig. 7

V. CONCLUSION

The results demonstrate that the Beyond federated architec-
ture using SCaNN can efficiently retrieve approximate nearest
neighbors in a decentralized environment. This system effec-
tively clusters YouTube embeddings using k-means clustering,
which enables fast and accurate similarity searches. By testing
the insertion of non-perfect entries, we showcase a functional
use case of the system, illustrating its capability to learn and
retrieve newly added YouTube embeddings even in a non-
optimized state.

The decentralized nature of the system allows for data distri-
bution across multiple devices while maintaining performance.
Additionally, the system can learn new embeddings based on
data from other nodes within the network, leveraging shared
clicklog data for collaborative learning. This collaborative
approach ensures that user privacy is preserved, as data is not
centralized.

The continuous integration of shared clicklog data enables
the system to refine its understanding of user preferences and
behaviors, leading to constant updates and improvements in
the embeddings. This method harnesses the collective knowl-
edge of the network, significantly enhancing the overall per-
formance and accuracy of the decentralized YouTube search
system. This research highlights the potential for creating a
decentralized web3 YouTube platform that is both efficient
and privacy-preserving, paving the way for more robust and
user-centric decentralized applications.

A. Future work

Future work could explore k-means clustering methods that
do not require access to the entire dataset. This approach
would enhance the scalability and efficiency of the system,
particularly for large and growing datasets.

Traditional k-means clustering needs the entire dataset to
identify optimal centroids, which can be computationally
intensive. Developing methods to perform k-means clustering
incrementally or on representative samples could reduce this
computational load and allow real-time clustering updates as
new data is added.

This capability would be especially useful in a decentralized
search system, where data is distributed and continuously
updated. Incremental k-means clustering would enable the
system to adapt to new data without exhaustive recomputation,
maintaining performance and accuracy in dynamic environ-
ments.

VI. APPENDIX

REFERENCES

[1] KaggleResources. URL: https://www.kaggle.com/docs/
notebooks#the-notebooks-environment.

[2] spotify-youtube-dataset. URL: https://www.kaggle.com/
datasets/salvatorerastelli/spotify-and-youtube.

[3] USEREtrained. URL: https://github.com/tensorflow/tflite-
support /blob/master / tensorflow lite support /examples /
colab/on device text to image search tflite.ipynb.

11

https://www.kaggle.com/docs/notebooks#the-notebooks-environment
https://www.kaggle.com/docs/notebooks#the-notebooks-environment
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube
https://www.kaggle.com/datasets/salvatorerastelli/spotify-and-youtube
https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/examples/colab/on_device_text_to_image_search_tflite.ipynb
https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/examples/colab/on_device_text_to_image_search_tflite.ipynb
https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/examples/colab/on_device_text_to_image_search_tflite.ipynb

	Introduction
	Problem Description
	Architecture of Beyond Federated
	User Interface
	TensorFlow Model
	Text Embedding Models

	TensorFlow Lite Support
	Gossip Network Protocol

	Experiments and Evaluation
	Experiment Setup
	Datasets, Embedders and Pre-trained Models
	Metrics

	Content Search on the Edge Experiment
	Results

	Random keyword inference on different Embedders Experiment
	Results
	Discussion

	Non-Perfect Insert Experiment
	Results

	Decentralised content discovery and search Experiment

	Conclusion
	Future work

	Appendix

