-
Notifications
You must be signed in to change notification settings - Fork 112
/
b-splines.jl
273 lines (222 loc) · 10.7 KB
/
b-splines.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
export
BSpline,
NoInterp,
Constant,
Linear,
Quadratic,
Cubic
abstract type Degree{N} <: Flag end
abstract type DegreeBC{N} <: Degree{N} end # degree type supporting a BoundaryCondition
(::Type{D})(::Type{BC}) where {D <: Degree, BC <: BoundaryCondition} = D(BC())
"""
BSpline(degree)
A flag signaling `BSpline` (integer-grid b-spline) interpolation along the corresponding axis.
`degree` is one of [`Constant`](@ref), [`Linear`](@ref), [`Quadratic`](@ref), or [`Cubic`](@ref).
"""
struct BSpline{D<:Degree} <: InterpolationType
degree::D
end
BSpline(::Type{D}) where D <: Degree = BSpline(D())
BSpline() = Linear |> BSpline
bsplinetype(::Type{BSpline{D}}) where {D<:Degree} = D
bsplinetype(::BS) where {BS<:BSpline} = bsplinetype(BS)
degree(mode::BSpline) = mode.degree
degree(::NoInterp) = NoInterp()
iscomplete(mode::BSpline) = iscomplete(degree(mode))
iscomplete(deg::DegreeBC) = _iscomplete(deg.bc.gt)
iscomplete(deg::Degree) = true
_iscomplete(::Nothing) = false
_iscomplete(::GridType) = true
function Base.show(io::IO, bs::BSpline)
print(io, "BSpline(")
show(io, degree(bs))
print(io, ')')
end
function Base.show(io::IO, deg::DegreeBC)
print(io, nameof(typeof(deg)), '(')
show(io, deg.bc)
print(io, ')')
end
"""
BSplineInterpolation{T,N,TCoefs,IT,Axs}
An interpolant-type for b-spline interpolation on a uniform grid with integer nodes.
`T` indicates the element type for operations like `collect(itp)`, and may also agree with
the values obtained from `itp(x, y, ...)` at least for certain types of `x` and `y`.
`N` is the dimensionality of the interpolant. The remaining type-parameters
describe the types of fields:
- the `coefs` field holds the interpolation coefficients. Depending on prefiltering,
these may or may not be the same as the supplied array of interpolant values.
- `parentaxes` holds the axes of the parent. Depending on prefiltering this may be
"narrower" than the axes of `coefs`.
- `it` holds the interpolation type, e.g., `BSpline(Linear())` or
`(BSpline(Quadratic(OnCell()),BSpline(Linear()))`.
`BSplineInterpolation` objects are typically created with [`interpolate`](@ref).
However, for customized control you may also construct them with
```julia
BSplineInterpolation(TWeights, coefs, it, axs)
```
where `T` gets computed from the product of `TWeights` and `eltype(coefs)`.
(This is equivalent to indicating that you'll be evaluating at locations `itp(x::TWeights, y::TWeights, ...)`.)
"""
struct BSplineInterpolation{T,N,TCoefs<:AbstractArray,IT<:DimSpec{BSpline},Axs<:Indices{N}} <: AbstractInterpolation{T,N,IT}
coefs::TCoefs
parentaxes::Axs
it::IT
end
function Base.:(==)(o1::BSplineInterpolation, o2::BSplineInterpolation)
o1.it == o2.it &&
o1.parentaxes == o2.parentaxes &&
o1.coefs == o2.coefs
end
BSplineInterpolation{T,N}(A::AbstractArray, axs::Indices{N}, it::IT) where {T,N,IT} =
BSplineInterpolation{T,N,typeof(A),IT,typeof(axs)}(A, axs, it)
function BSplineInterpolation(::Type{TWeights}, A::AbstractArray{Tel,N}, it::IT, axs) where {N,Tel,TWeights<:Real,IT<:DimSpec{BSpline}}
# String interpolation causes allocation, noinline avoids that unless they get called
@noinline err_concrete(IT) = error("The b-spline type must be a concrete type (was $IT)")
@noinline warn_concrete(A) = @warn("For performance reasons, consider using an array of a concrete type (typeof(A) == $(typeof(A)))")
@noinline err_incomplete(it) = error("OnGrid/OnCell is not supplied for some of the interpolation modes in $it")
@noinline err_singleton(A, it) = throw(ArgumentError("size $(size(A)) is inconsistent with $it, use NoInterp along singleton dimensions"))
isconcretetype(IT) || err_concrete(IT)
isconcretetype(typeof(A)) || warn_concrete(A)
iscomplete(it) || err_incomplete(it)
# Check that dimensions of size 1 are NoInterp
is_singleton_ok(A, it) || err_singleton(A, it)
# Compute the output element type when positions have type TWeights
if isempty(A)
T = Base.promote_op(*, TWeights, eltype(A))
else
T = typeof(zero(TWeights) * first(A))
end
BSplineInterpolation{T,N}(A, fix_axis.(axs), it)
end
function BSplineInterpolation(A::AbstractArray{Tel,N}, it::IT, axs) where {N,Tel,IT<:DimSpec{BSpline}}
@noinline err_axes(A, it, axs) = throw(ArgumentError("parentaxes $axs are inconsistent with coefficient array axes $(axes(A)) and interpolation type $it"))
paxs = padded_axes(axs, it)
all(map(⊆, paxs, axes(A))) || err_axes(A, it, axs)
BSplineInterpolation(tweight(A), A, it, axs)
end
iscomplete(its::Tuple) = all(iscomplete, its)
is_singleton_ok(A, it) = is_singleton_ok(size(A), it)
@inline function is_singleton_ok(sz::Tuple, it)
if sz[1] == 1
it1 = getfirst(it)
it1 isa NoInterp || return false
end
return is_singleton_ok(Base.tail(sz), getrest(it))
end
is_singleton_ok(::Tuple{}, it) = true
coefficients(itp::BSplineInterpolation) = itp.coefs
interpdegree(itp::BSplineInterpolation) = interpdegree(itpflag(itp))
interpdegree(::BSpline{T}) where T = T()
interpdegree(it::Tuple{Vararg{Union{BSpline,NoInterp},N}}) where N = interpdegree.(it)
itpflag(itp::BSplineInterpolation) = itp.it
size(itp::BSplineInterpolation) = map(length, itp.parentaxes)
axes(itp::BSplineInterpolation) = itp.parentaxes
lbounds(itp::BSplineInterpolation) = _lbounds(itp.parentaxes, itpflag(itp))
ubounds(itp::BSplineInterpolation) = _ubounds(itp.parentaxes, itpflag(itp))
_lbounds(axs, itp) = (lbound(axs[1], getfirst(itp)), _lbounds(Base.tail(axs), getrest(itp))...)
_ubounds(axs, itp) = (ubound(axs[1], getfirst(itp)), _ubounds(Base.tail(axs), getrest(itp))...)
_lbounds(::Tuple{}, itp) = ()
_ubounds(::Tuple{}, itp) = ()
lbound(ax::AbstractRange, bs::BSpline) = lbound(ax, degree(bs))
lbound(ax::AbstractRange, deg::Degree) = first(ax)
lbound(ax::AbstractRange, deg::DegreeBC) = lbound(ax, deg, deg.bc.gt)
ubound(ax::AbstractRange, bs::BSpline) = ubound(ax, degree(bs))
ubound(ax::AbstractRange, deg::Degree) = last(ax)
ubound(ax::AbstractRange, deg::DegreeBC) = ubound(ax, deg, deg.bc.gt)
lbound(ax::AbstractUnitRange, ::DegreeBC, ::OnCell) = first(ax) - 0.5
ubound(ax::AbstractUnitRange, ::DegreeBC, ::OnCell) = last(ax) + 0.5
lbound(ax::AbstractUnitRange, ::DegreeBC, ::OnGrid) = first(ax)
ubound(ax::AbstractUnitRange, ::DegreeBC, ::OnGrid) = last(ax)
fix_axis(r::Base.OneTo) = r
fix_axis(r::Base.Slice) = r
fix_axis(r::UnitRange) = Base.Slice(r)
fix_axis(r::AbstractUnitRange) = fix_axis(UnitRange(r))
count_interp_dims(::Type{BSI}, n) where BSI<:BSplineInterpolation = count_interp_dims(itptype(BSI), n)
function interpolate(::Type{TWeights}, ::Type{TC}, A, it::IT) where {TWeights,TC,IT<:DimSpec{BSpline}}
Apad = prefilter(TWeights, TC, A, it)
BSplineInterpolation(TWeights, Apad, it, axes(A))
end
function interpolate(::Type{TWeights}, ::Type{TC}, A, it::IT, λ::Real, k::Int) where {TWeights,TC,IT<:DimSpec{BSpline}}
Apad = prefilter(TWeights, TC, A, it, λ, k)
BSplineInterpolation(TWeights, Apad, it, axes(A))
end
"""
itp = interpolate(A, interpmode)
Interpolate an array `A` in the mode determined by `interpmode`.
`interpmode` may be one of
- `NoInterp()`
- `BSpline(Constant())`
- `BSpline(Linear())`
- `BSpline(Quadratic(bc))` (see [`BoundaryCondition`](@ref))
- `BSpline(Cubic(bc))`
It may also be a tuple of such values, if you want to use different interpolation schemes along each axis.
"""
function interpolate(A::AbstractArray, it::IT) where {IT<:DimSpec{BSpline}}
interpolate(tweight(A), tcoef(A), A, it)
end
"""
itp = interpolate(A, interpmode, gridstyle, λ, k)
Interpolate an array `A` in the mode determined by `interpmode` and `gridstyle`
with regularization following [1], of order `k` and constant `λ`.
`interpmode` may be one of
- `BSpline(NoInterp())`
- `BSpline(Linear())`
- `BSpline(Quadratic(BC()))` (see [`BoundaryCondition`](@ref))
- `BSpline(Cubic(BC()))`
It may also be a tuple of such values, if you want to use different interpolation schemes along each axis.
`gridstyle` should be one of `OnGrid()` or `OnCell()`.
`k` corresponds to the derivative to penalize. In the limit λ->∞, the interpolation function is
a polynomial of order `k-1`. A value of 2 is the most common.
`λ` is non-negative. If its value is zero, it falls back to non-regularized interpolation.
# References
- [Eilers and Marx, 1996, Statist. Sci. 11(2), 1996](@cite Eilers1996)
"""
function interpolate(A::AbstractArray, it::IT, λ::Real, k::Int) where {IT<:DimSpec{BSpline}}
interpolate(tweight(A), tcoef(A), A, it, λ, k)
end
# We can't just return a tuple-of-types due to julia #12500
tweight(A::AbstractArray) = Float64
tweight(A::AbstractArray{T}) where T<:AbstractFloat = T
tweight(A::AbstractArray{<:AbstractVector{T}}) where {T} = T
tweight(A::AbstractArray{Rational{Int}}) = Rational{Int}
tweight(A::AbstractArray{T}) where {T<:Integer} = typeof(float(zero(T)))
tcoef(A::AbstractArray) = eltype(A)
tcoef(A::AbstractArray{Float32}) = Float32
tcoef(A::AbstractArray{Rational{Int}}) = Rational{Int}
tcoef(A::AbstractArray{T}) where {T<:Integer} = typeof(float(zero(T)))
"In-place version of `interpolate`. It destroys input `A` and may trim the domain at the endpoints."
function interpolate!(::Type{TWeights}, A::AbstractArray, it::IT) where {TWeights,IT<:DimSpec{BSpline}}
# Set the bounds of the interpolant inward, if necessary
axsA = axes(A)
axspad = padded_axes(axsA, it)
BSplineInterpolation(TWeights, prefilter!(TWeights, A, it), it, fix_axis.(padinset.(axsA, axspad)))
end
function interpolate!(A::AbstractArray, it::IT) where {IT<:DimSpec{BSpline}}
interpolate!(tweight(A), A, it)
end
function interpolate!(::Type{TWeights}, A::AbstractArray, it::IT, λ::Real, k::Int) where {TWeights,IT<:DimSpec{BSpline}}
# Set the bounds of the interpolant inward, if necessary
axsA = axes(A)
axspad = padded_axes(axsA, it)
BSplineInterpolation(TWeights, prefilter!(TWeights, A, it, λ, k), it, fix_axis.(padinset.(axsA, axspad)))
end
function interpolate!(A::AbstractArray, it::IT, λ::Real, k::Int) where {IT<:DimSpec{BSpline}}
interpolate!(tweight(A), A, it, λ, k)
end
if VERSION >= v"1.7.0-beta1"
# https://github.com/JuliaLang/julia/pull/40623
lut!(dl, d, du) = lu!(Tridiagonal(dl, d, du), NoPivot())
else
lut!(dl, d, du) = lu!(Tridiagonal(dl, d, du), Val(false))
end
include("constant.jl")
include("linear.jl")
include("quadratic.jl")
include("cubic.jl")
include("indexing.jl")
include("prefiltering.jl")
include("../filter1d.jl")
Base.parent(A::BSplineInterpolation{T,N,TCoefs,UT}) where {T,N,TCoefs,UT<:Union{BSpline{<:Linear},BSpline{<:Constant}}} = A.coefs
Base.parent(A::BSplineInterpolation{T,N,TCoefs,UT}) where {T,N,TCoefs,UT} =
throw(ArgumentError("The given BSplineInterpolation does not serve as a \"view\" for a parent array. This would only be true for Constant and Linear b-splines."))