-
Notifications
You must be signed in to change notification settings - Fork 30
/
dp_utils.py
679 lines (545 loc) · 24.9 KB
/
dp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
"""
Copyright 2019 Brian Thompson
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
import sys
from ast import literal_eval
from collections import OrderedDict
from math import ceil
from time import time
import numpy as np
import pyximport
pyximport.install(setup_args={'include_dirs':np.get_include()}, inplace=True, reload_support=True)
from dp_core import make_dense_costs, score_path, sparse_dp, make_sparse_costs, dense_dp
logger = logging.getLogger('vecalign') # set up in vecalign.py
def preprocess_line(line):
line = line.strip()
if len(line) == 0:
line = 'BLANK_LINE'
return line
def yield_overlaps(lines, num_overlaps):
lines = [preprocess_line(line) for line in lines]
for overlap in range(1, num_overlaps + 1):
for out_line in layer(lines, overlap):
# check must be here so all outputs are unique
out_line2 = out_line[:10000] # limit line so dont encode arbitrarily long sentences
yield out_line2
def read_in_embeddings(text_file, embed_file):
"""
Given a text file with candidate sentences and a corresponing embedding file,
make a maping from candidate sentence to embedding index,
and a numpy array of the embeddings
"""
sent2line = dict()
with open(text_file, 'rt', encoding="utf-8") as fin:
for ii, line in enumerate(fin):
if line.strip() in sent2line:
raise Exception('got multiple embeddings for the same line')
sent2line[line.strip()] = ii
line_embeddings = np.fromfile(embed_file, dtype=np.float32, count=-1)
if line_embeddings.size == 0:
raise Exception('Got empty embedding file')
laser_embedding_size = line_embeddings.size // len(sent2line) # currently hardcoded to 1024
if laser_embedding_size != 1024:
logger.warning('expected an embedding size of 1024, got %s', laser_embedding_size)
logger.info('laser_embedding_size determined to be %d', laser_embedding_size)
line_embeddings.resize(line_embeddings.shape[0] // laser_embedding_size, laser_embedding_size)
return sent2line, line_embeddings
def make_doc_embedding(sent2line, line_embeddings, lines, num_overlaps):
"""
lines: sentences in input document to embed
sent2line, line_embeddings: precomputed embeddings for lines (and overlaps of lines)
"""
lines = [preprocess_line(line) for line in lines]
vecsize = line_embeddings.shape[1]
vecs0 = np.empty((num_overlaps, len(lines), vecsize), dtype=np.float32)
for ii, overlap in enumerate(range(1, num_overlaps + 1)):
for jj, out_line in enumerate(layer(lines, overlap)):
try:
line_id = sent2line[out_line]
except KeyError:
logger.warning('Failed to find overlap=%d line "%s". Will use random vector.', overlap, out_line)
line_id = None
if line_id is not None:
vec = line_embeddings[line_id]
else:
vec = np.random.random(vecsize) - 0.5
vec = vec / np.linalg.norm(vec)
vecs0[ii, jj, :] = vec
return vecs0
def make_norm1(vecs0):
"""
make vectors norm==1 so that cosine distance can be computed via dot product
"""
for ii in range(vecs0.shape[0]):
for jj in range(vecs0.shape[1]):
norm = np.sqrt(np.square(vecs0[ii, jj, :]).sum())
vecs0[ii, jj, :] = vecs0[ii, jj, :] / (norm + 1e-5)
def layer(lines, num_overlaps, comb=' '):
"""
make front-padded overlapping sentences
"""
if num_overlaps < 1:
raise Exception('num_overlaps must be >= 1')
out = ['PAD', ] * min(num_overlaps - 1, len(lines))
for ii in range(len(lines) - num_overlaps + 1):
out.append(comb.join(lines[ii:ii + num_overlaps]))
return out
def read_alignments(fin):
alignments = []
with open(fin, 'rt', encoding="utf-8") as infile:
for line in infile:
fields = [x.strip() for x in line.split(':') if len(x.strip())]
if len(fields) < 2:
raise Exception('Got line "%s", which does not have at least two ":" separated fields' % line.strip())
try:
src = literal_eval(fields[0])
tgt = literal_eval(fields[1])
except:
raise Exception('Failed to parse line "%s"' % line.strip())
alignments.append((src, tgt))
# I know bluealign files have a few entries entries missing,
# but I don't fix them in order to be consistent previous reported scores
return alignments
def print_alignments(alignments, scores=None, src_lines=None, tgt_lines=None, ofile=sys.stdout):
if scores is None:
scores = [None for _ in alignments]
for (x, y), s in zip(alignments, scores):
if s is None:
print('%s:%s' % (x, y), file=ofile)
else:
print('%s:%s:%.6f' % (x, y, s), file=ofile)
if src_lines is not None and tgt_lines is not None:
print(' '*40, 'SRC: ', ' '.join([src_lines[i].replace('\n', ' ').strip() for i in x]), file=ofile)
print(' '*40, 'TGT: ', ' '.join([tgt_lines[i].replace('\n', ' ').strip() for i in y]), file=ofile)
class DeletionKnob(object):
"""
A good deletion penalty is dependent on normalization, and probably language, domain, etc, etc
I want a way to control deletion penalty that generalizes well...
Sampling costs and use percentile seems to work fairly well.
"""
def __init__(self, samp, res_min, res_max):
self.res_min = res_min
self.res_max = res_max
if self.res_min >= self.res_max:
logger.warning('res_max <= res_min, increasing it')
self.res_max = self.res_min + 1e-4
num_bins = 1000
num_pts = 30
self.hist, self.bin_edges = np.histogram(samp, bins=num_bins,
range=[self.res_min, self.res_max],
density=True)
dx = self.bin_edges[1] - self.bin_edges[0]
self.cdf = np.cumsum(self.hist) * dx
interp_points = [(0, self.res_min), ]
for knob_val in np.linspace(0, 1, num_pts - 1)[1:-1]:
cdf_idx = np.searchsorted(self.cdf, knob_val)
cdf_val = self.res_min + cdf_idx / float(num_bins) * (self.res_max - self.res_min)
interp_points.append((knob_val, cdf_val))
interp_points.append((1, self.res_max))
self.x, self.y = zip(*interp_points)
def percentile_frac_to_del_penalty(self, knob_val):
del_pen = np.interp([knob_val], self.x, self.y)[0]
return del_pen
def make_alignment_types(max_alignment_size):
# return list of all (n,m) where n+m <= max_alignment_size
# does not include deletions, i.e. (1, 0) or (0, 1)
alignment_types = []
for x in range(1, max_alignment_size):
for y in range(1, max_alignment_size):
if x + y <= max_alignment_size:
alignment_types.append((x, y))
return alignment_types
def make_one_to_many_alignment_types(max_alignment_size):
# return list of all (1, m) where m <= max_alignment_size
# does not include deletions, i.e. (1, 0) or (0, 1)
alignment_types = []
for m in range(1, max_alignment_size + 1):
alignment_types.append((1, m))
return alignment_types
def ab2xy_w_offset(aa, bb_idx, bb_offset):
bb_from_side = bb_idx + bb_offset[aa]
xx = aa - bb_from_side
yy = bb_from_side
return (xx, yy)
def xy2ab_w_offset(xx, yy, bb_offset):
aa = xx + yy
bb_from_side = yy
bb = bb_from_side - bb_offset[aa]
return aa, bb
def process_scores(scores, alignments):
# floating point sometimes gives negative numbers, which is a little unnerving ...
scores = np.clip(scores, a_min=0, a_max=None)
for ii, (x_algn, y_algn) in enumerate(alignments):
# deletion penalty is pretty arbitrary, just report 0
if len(x_algn) == 0 or len(y_algn) == 0:
scores[ii] = 0.0
# report sores un-normalized by alignment sizes
# (still normalized with random vectors, though)
else:
scores[ii] = scores[ii] / len(x_algn) / len(y_algn)
return scores
def sparse_traceback(a_b_csum, a_b_xp, a_b_yp, b_offset, xsize, ysize):
alignments = []
xx = xsize
yy = ysize
cum_costs = []
while True:
aa, bb = xy2ab_w_offset(xx, yy, b_offset)
cum_costs.append(a_b_csum[aa, bb])
xp = a_b_xp[aa, bb]
yp = a_b_yp[aa, bb]
if xx == yy == 0:
break
if xx < 0 or yy < 0:
raise Exception('traceback bug')
x_side = list(range(xx - xp, xx))
y_side = list(range(yy - yp, yy))
alignments.append((x_side, y_side))
xx = xx - xp
yy = yy - yp
alignments.reverse()
cum_costs.reverse()
costs = np.array(cum_costs[1:]) - np.array(cum_costs[:-1])
# "costs" are scaled by x_alignment_size * y_alignment_size
# and the cost of a deletion is del_penalty
# "scores": 0 for deletion/insertion,
# and cosine distance, *not* scaled
# by len(x_alignment)*len(y_alignment)
scores = process_scores(scores=costs, alignments=alignments)
return alignments, scores
def dense_traceback(x_y_tb):
xsize, ysize = x_y_tb.shape
xx = xsize - 1
yy = ysize - 1
alignments = []
while True:
if xx == yy == 0:
break
bp = x_y_tb[xx, yy]
if bp == 0:
xp, yp = 1, 1
alignments.append(([xx - 1], [yy - 1]))
elif bp == 1:
xp, yp = 0, 1
alignments.append(([], [yy - 1]))
elif bp == 2:
xp, yp = 1, 0
alignments.append(([xx - 1], []))
else:
raise Exception('got unknown value')
xx = xx - xp
yy = yy - yp
alignments.reverse()
return alignments
def append_slant(path, xwidth, ywidth):
"""
Append quantized approximation to a straight line
from current x,y to a point at (x+xwidth, y+ywidth)
"""
NN = xwidth + ywidth
xstart, ystart = path[-1]
for ii in range(1, NN + 1):
x = xstart + round(xwidth * ii / NN)
y = ystart + round(ywidth * ii / NN)
# In the case of ties we want them to round differently,
# so explicitly make sure we take a step of 1, not 0 or 2
lastx, lasty = path[-1]
delta = x + y - lastx - lasty
if delta == 1:
path.append((x, y))
elif delta == 2:
path.append((x - 1, y))
elif delta == 0:
path.append((x + 1, y))
def alignment_to_search_path(algn):
"""
Given an alignment, make searchpath.
Searchpath must step exactly one position in x XOR y at each time step.
In the case of a block of deletions, the order found by DP is not meaningful.
To make things consistent and to improve the probability of recovering
from search errors, we search an approximately straight line
through a block of deletions. We do the same through a many-many
alignment, even though we currently don't refine a many-many alignment...
"""
path = [(0, 0), ]
xdel, ydel = 0, 0
ydel = 0
for x, y in algn:
if len(x) and len(y):
append_slant(path, xdel, ydel)
xdel, ydel = 0, 0
append_slant(path, len(x), len(y))
elif len(x):
xdel += len(x)
elif len(y):
ydel += len(y)
append_slant(path, xdel, ydel)
return path
def extend_alignments(course_alignments, size0, size1):
"""
extend alignments to include new endpoints size0, size1
if alignments are larger than size0/size1, raise exception
"""
# could be a string of deletions or insertions at end, so cannot just grab last one
xmax = 0 # maximum x value in course_alignments
ymax = 0 # maximum y value in course_alignments
for x, y in course_alignments:
for xval in x:
xmax = max(xmax, xval)
for yval in y:
ymax = max(ymax, yval)
if xmax > size0 or ymax > size1:
raise Exception('asked to extend alignments but already bigger than requested')
# do not duplicate xmax/ymax, do include size0/size1
extra_x = list(range(xmax + 1, size0 + 1))
extra_y = list(range(ymax + 1, size1 + 1))
logger.debug('extending alignments in x by %d and y by %d', len(extra_x), len(extra_y))
if len(extra_x) == 0:
for yval in extra_y:
course_alignments.append(([], [yval]))
elif len(extra_y) == 0:
for xval in extra_x:
course_alignments.append(([xval], []))
else:
course_alignments.append((extra_x, extra_y))
def upsample_alignment(algn):
def upsample_one_alignment(xx):
return list(range(min(xx) * 2, (max(xx) + 1) * 2))
new_algn = []
for xx, yy in algn:
if len(xx) == 0:
for yyy in upsample_one_alignment(yy):
new_algn.append(([], [yyy]))
elif len(yy) == 0:
for xxx in upsample_one_alignment(xx):
new_algn.append(([xxx], []))
else:
new_algn.append((upsample_one_alignment(xx), upsample_one_alignment(yy)))
return new_algn
def make_del_knob(e_laser,
f_laser,
e_laser_norms,
f_laser_norms,
sample_size):
e_size = e_laser.shape[0]
f_size = f_laser.shape[0]
if e_size > 0 and f_size > 0 and sample_size > 0:
if e_size * f_size < sample_size:
# dont sample, just compute full matrix
sample_size = e_size * f_size
x_idxs = np.zeros(sample_size, dtype=np.int32)
y_idxs = np.zeros(sample_size, dtype=np.int32)
c = 0
for ii in range(e_size):
for jj in range(f_size):
x_idxs[c] = ii
y_idxs[c] = jj
c += 1
else:
# get random samples
x_idxs = np.random.choice(range(e_size), size=sample_size, replace=True).astype(np.int32)
y_idxs = np.random.choice(range(f_size), size=sample_size, replace=True).astype(np.int32)
# output
random_scores = np.empty(sample_size, dtype=np.float32)
score_path(x_idxs, y_idxs,
e_laser_norms, f_laser_norms,
e_laser, f_laser,
random_scores, )
min_score = 0
max_score = max(random_scores) # could bump this up... but its probably fine
else:
# Not much we can do here...
random_scores = np.array([0.0, 0.5, 1.0]) # ???
min_score = 0
max_score = 1 # ????
del_knob = DeletionKnob(random_scores, min_score, max_score)
return del_knob
def compute_norms(vecs0, vecs1, num_samples, overlaps_to_use=None):
# overlaps_to_use = 10 # 10 matches before
overlaps1, size1, dim = vecs1.shape
overlaps0, size0, dim0 = vecs0.shape
assert (dim == dim0)
if overlaps_to_use is not None:
if overlaps_to_use > overlaps1:
raise Exception('Cannot use more overlaps than provided. You may want to re-run make_verlaps.py with a larger -n value')
else:
overlaps_to_use = overlaps1
samps_per_overlap = ceil(num_samples / overlaps_to_use)
if size1 and samps_per_overlap:
# sample other size (from all overlaps) to compre to this side
vecs1_rand_sample = np.empty((samps_per_overlap * overlaps_to_use, dim), dtype=np.float32)
for overlap_ii in range(overlaps_to_use):
idxs = np.random.choice(range(size1), size=samps_per_overlap, replace=True)
random_vecs = vecs1[overlap_ii, idxs, :]
vecs1_rand_sample[overlap_ii * samps_per_overlap:(overlap_ii + 1) * samps_per_overlap, :] = random_vecs
norms0 = np.empty((overlaps0, size0), dtype=np.float32)
for overlap_ii in range(overlaps0):
e_laser = vecs0[overlap_ii, :, :]
sim = np.matmul(e_laser, vecs1_rand_sample.T)
norms0[overlap_ii, :] = 1.0 - sim.mean(axis=1)
else: # no samples, no normalization
norms0 = np.ones((overlaps0, size0)).astype(np.float32)
return norms0
def downsample_vectors(vecs1):
a, b, c = vecs1.shape
half = np.empty((a, b // 2, c), dtype=np.float32)
for ii in range(a):
# average consecutive vectors
for jj in range(0, b - b % 2, 2):
v1 = vecs1[ii, jj, :]
v2 = vecs1[ii, jj + 1, :]
half[ii, jj // 2, :] = v1 + v2
# compute mean for all vectors
mean = np.mean(half[ii, :, :], axis=0)
for jj in range(0, b - b % 2, 2):
# remove mean
half[ii, jj // 2, :] = half[ii, jj // 2, :] - mean
# make vectors norm==1 so dot product is cosine distance
make_norm1(half)
return half
def vecalign(vecs0,
vecs1,
final_alignment_types,
del_percentile_frac,
width_over2,
max_size_full_dp,
costs_sample_size,
num_samps_for_norm,
norms0=None,
norms1=None):
if width_over2 < 3:
logger.warning('width_over2 was set to %d, which does not make sense. increasing to 3.', width_over2)
width_over2 = 3
# make sure input embeddings are norm==1
make_norm1(vecs0)
make_norm1(vecs1)
# save off runtime stats for summary
runtimes = OrderedDict()
# Determine stack depth
s0, s1 = vecs0.shape[1], vecs1.shape[1]
max_depth = 0
while s0 * s1 > max_size_full_dp ** 2:
max_depth += 1
s0 = s0 // 2
s1 = s1 // 2
# init recursion stack
# depth is 0-based (full size is 0, 1 is half, 2 is quarter, etc)
stack = {0: {'v0': vecs0, 'v1': vecs1}}
# downsample sentence vectors
t0 = time()
for depth in range(1, max_depth + 1):
stack[depth] = {'v0': downsample_vectors(stack[depth - 1]['v0']),
'v1': downsample_vectors(stack[depth - 1]['v1'])}
runtimes['Downsample embeddings'] = time() - t0
# compute norms for all depths, add sizes, add alignment types
t0 = time()
for depth in stack:
stack[depth]['size0'] = stack[depth]['v0'].shape[1]
stack[depth]['size1'] = stack[depth]['v1'].shape[1]
stack[depth]['alignment_types'] = final_alignment_types if depth == 0 else [(1, 1)]
if depth == 0 and norms0 is not None:
if norms0.shape != vecs0.shape[:2]:
print('norms0.shape:', norms0.shape)
print('vecs0.shape[:2]:', vecs0.shape[:2])
raise Exception('norms0 wrong shape')
stack[depth]['n0'] = norms0
else:
stack[depth]['n0'] = compute_norms(stack[depth]['v0'], stack[depth]['v1'], num_samps_for_norm)
if depth == 0 and norms1 is not None:
if norms1.shape != vecs1.shape[:2]:
print('norms1.shape:', norms1.shape)
print('vecs1.shape[:2]:', vecs1.shape[:2])
raise Exception('norms1 wrong shape')
stack[depth]['n1'] = norms1
else:
stack[depth]['n1'] = compute_norms(stack[depth]['v1'], stack[depth]['v0'], num_samps_for_norm)
runtimes['Normalize embeddings'] = time() - t0
# Compute deletion penalty for all depths
t0 = time()
for depth in stack:
stack[depth]['del_knob'] = make_del_knob(e_laser=stack[depth]['v0'][0, :, :],
f_laser=stack[depth]['v1'][0, :, :],
e_laser_norms=stack[depth]['n0'][0, :],
f_laser_norms=stack[depth]['n1'][0, :],
sample_size=costs_sample_size)
stack[depth]['del_penalty'] = stack[depth]['del_knob'].percentile_frac_to_del_penalty(del_percentile_frac)
logger.debug('del_penalty at depth %d: %f', depth, stack[depth]['del_penalty'])
runtimes['Compute deletion penalties'] = time() - t0
tt = time() - t0
logger.debug('%d x %d full DP make features: %.6fs (%.3e per dot product)',
stack[max_depth]['size0'], stack[max_depth]['size1'], tt,
tt / (stack[max_depth]['size0'] + 1e-6) / (stack[max_depth]['size1'] + 1e-6))
# full DP at maximum recursion depth
t0 = time()
stack[max_depth]['costs_1to1'] = make_dense_costs(stack[max_depth]['v0'],
stack[max_depth]['v1'],
stack[max_depth]['n0'],
stack[max_depth]['n1'])
runtimes['Full DP make features'] = time() - t0
t0 = time()
_, stack[max_depth]['x_y_tb'] = dense_dp(stack[max_depth]['costs_1to1'], stack[max_depth]['del_penalty'])
stack[max_depth]['alignments'] = dense_traceback(stack[max_depth]['x_y_tb'])
runtimes['Full DP'] = time() - t0
# upsample the path up to the top resolution
compute_costs_times = []
dp_times = []
upsample_depths = [0, ] if max_depth == 0 else list(reversed(range(0, max_depth)))
for depth in upsample_depths:
if max_depth > 0: # upsample previoius alignment to current resolution
course_alignments = upsample_alignment(stack[depth + 1]['alignments'])
# features may have been truncated when downsampleing, so alignment may need extended
extend_alignments(course_alignments, stack[depth]['size0'], stack[depth]['size1']) # in-place
else: # We did a full size 1-1 search, so search same size with more alignment types
course_alignments = stack[0]['alignments']
# convert couse alignments to a searchpath
stack[depth]['searchpath'] = alignment_to_search_path(course_alignments)
# compute ccosts for sparse DP
t0 = time()
stack[depth]['a_b_costs'], stack[depth]['b_offset'] = make_sparse_costs(stack[depth]['v0'], stack[depth]['v1'],
stack[depth]['n0'], stack[depth]['n1'],
stack[depth]['searchpath'],
stack[depth]['alignment_types'],
width_over2)
tt = time() - t0
num_dot_products = len(stack[depth]['b_offset']) * len(stack[depth]['alignment_types']) * width_over2 * 2
logger.debug('%d x %d sparse DP (%d alignment types, %d window) make features: %.6fs (%.3e per dot product)',
stack[max_depth]['size0'], stack[max_depth]['size1'],
len(stack[depth]['alignment_types']), width_over2 * 2,
tt, tt / (num_dot_products + 1e6))
compute_costs_times.append(time() - t0)
t0 = time()
# perform sparse DP
stack[depth]['a_b_csum'], stack[depth]['a_b_xp'], stack[depth]['a_b_yp'], \
stack[depth]['new_b_offset'] = sparse_dp(stack[depth]['a_b_costs'], stack[depth]['b_offset'],
stack[depth]['alignment_types'], stack[depth]['del_penalty'],
stack[depth]['size0'], stack[depth]['size1'])
# performace traceback to get alignments and alignment scores
# for debugging, avoid overwriting stack[depth]['alignments']
akey = 'final_alignments' if depth == 0 else 'alignments'
stack[depth][akey], stack[depth]['alignment_scores'] = sparse_traceback(stack[depth]['a_b_csum'],
stack[depth]['a_b_xp'],
stack[depth]['a_b_yp'],
stack[depth]['new_b_offset'],
stack[depth]['size0'],
stack[depth]['size1'])
dp_times.append(time() - t0)
runtimes['Upsample DP compute costs'] = sum(compute_costs_times[:-1])
runtimes['Upsample DP'] = sum(dp_times[:-1])
runtimes['Final DP compute costs'] = compute_costs_times[-1]
runtimes['Final DP'] = dp_times[-1]
# log time stats
max_key_str_len = max([len(key) for key in runtimes])
for key in runtimes:
if runtimes[key] > 5e-5:
logger.info(key + ' took ' + '.' * (max_key_str_len + 5 - len(key)) + ('%.4fs' % runtimes[key]).rjust(7))
return stack