-
Notifications
You must be signed in to change notification settings - Fork 149
/
MNISTDatasetHandler.swift
68 lines (58 loc) · 2.45 KB
/
MNISTDatasetHandler.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Foundation
import TensorFlow
func fetchMNISTDataset(
localStorageDirectory: URL,
remoteBaseDirectory: String,
imagesFilename: String,
labelsFilename: String
) -> [(data: [UInt8], label: Int32)] {
guard let remoteRoot = URL(string: remoteBaseDirectory) else {
fatalError("Failed to create MNIST root url: \(remoteBaseDirectory)")
}
let imagesData = DatasetUtilities.fetchResource(
filename: imagesFilename,
fileExtension: "gz",
remoteRoot: remoteRoot,
localStorageDirectory: localStorageDirectory)
let labelsData = DatasetUtilities.fetchResource(
filename: labelsFilename,
fileExtension: "gz",
remoteRoot: remoteRoot,
localStorageDirectory: localStorageDirectory)
let images = [UInt8](imagesData).dropFirst(16)
let labels = [UInt8](labelsData).dropFirst(8).map(Int32.init)
var labeledImages: [(data: [UInt8], label: Int32)] = []
let imageByteSize = 28 * 28
for imageIndex in 0..<labels.count {
let baseAddress = images.startIndex + imageIndex * imageByteSize
let data = [UInt8](images[baseAddress..<(baseAddress + imageByteSize)])
labeledImages.append((data: data, label: labels[imageIndex]))
}
return labeledImages
}
func makeMNISTBatch<BatchSamples: Collection>(
samples: BatchSamples, flattening: Bool, normalizing: Bool, device:Device
) -> LabeledImage where BatchSamples.Element == (data: [UInt8], label: Int32) {
let bytes = samples.lazy.map(\.data).reduce(into: [], +=)
let shape: TensorShape = flattening ? [samples.count, 28 * 28] : [samples.count, 28, 28, 1]
let images = Tensor<UInt8>(shape: shape, scalars: bytes, on:device)
var imageTensor = Tensor<Float>(images) / 255.0
if normalizing {
imageTensor = imageTensor * 2.0 - 1.0
}
let labels = Tensor<Int32>(samples.map(\.label), on: device)
return LabeledImage(data: imageTensor, label: labels)
}