-
Notifications
You must be signed in to change notification settings - Fork 453
/
mnist_dpsgd_tutorial_keras.py
146 lines (119 loc) · 5.02 KB
/
mnist_dpsgd_tutorial_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training a CNN on MNIST with Keras and the DP SGD optimizer."""
from absl import app
from absl import flags
from absl import logging
import dp_accounting
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras import DPKerasSGDOptimizer
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = flags.FLAGS
def compute_epsilon(steps):
"""Computes epsilon value for given hyperparameters."""
if FLAGS.noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
accountant = dp_accounting.rdp.RdpAccountant(orders)
sampling_probability = FLAGS.batch_size / 60000
event = dp_accounting.SelfComposedDpEvent(
dp_accounting.PoissonSampledDpEvent(
sampling_probability,
dp_accounting.GaussianDpEvent(FLAGS.noise_multiplier)), steps)
accountant.compose(event)
# Delta is set to 1e-5 because MNIST has 60000 training points.
return accountant.get_epsilon(target_delta=1e-5)
def load_mnist():
"""Loads MNIST and preprocesses to combine training and validation data."""
train, test = tf.keras.datasets.mnist.load_data()
train_data, train_labels = train
test_data, test_labels = test
train_data = np.array(train_data, dtype=np.float32) / 255
test_data = np.array(test_data, dtype=np.float32) / 255
train_data = train_data.reshape((train_data.shape[0], 28, 28, 1))
test_data = test_data.reshape((test_data.shape[0], 28, 28, 1))
train_labels = np.array(train_labels, dtype=np.int32)
test_labels = np.array(test_labels, dtype=np.int32)
train_labels = tf.keras.utils.to_categorical(train_labels, num_classes=10)
test_labels = tf.keras.utils.to_categorical(test_labels, num_classes=10)
assert train_data.min() == 0.
assert train_data.max() == 1.
assert test_data.min() == 0.
assert test_data.max() == 1.
return train_data, train_labels, test_data, test_labels
def main(unused_argv):
logging.set_verbosity(logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_mnist()
# Define a sequential Keras model
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(
16,
8,
strides=2,
padding='same',
activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Conv2D(
32, 4, strides=2, padding='valid', activation='relu'),
tf.keras.layers.MaxPool2D(2, 1),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(10)
])
if FLAGS.dpsgd:
optimizer = DPKerasSGDOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
# Compute vector of per-example loss rather than its mean over a minibatch.
loss = tf.keras.losses.CategoricalCrossentropy(
from_logits=True, reduction=tf.losses.Reduction.NONE)
else:
optimizer = tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate)
loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
# Compile model with Keras
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
# Train model with Keras
model.fit(
train_data,
train_labels,
epochs=FLAGS.epochs,
validation_data=(test_data, test_labels),
batch_size=FLAGS.batch_size)
# Compute the privacy budget expended.
if FLAGS.dpsgd:
eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)