-
-
Notifications
You must be signed in to change notification settings - Fork 93
/
CreateTable.R
398 lines (359 loc) · 14.5 KB
/
CreateTable.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
library(data.table)
library(sparkline)
# ====準備部分====
source(file = "01_Settings/Path.R", local = T, encoding = "UTF-8")
source(file = "01_Settings/color.R", local = TRUE, encoding = "UTF-8")
# 感染者ソーステーブルを取得
byDate <- fread(paste0(DATA_PATH, "byDate.csv"), header = T)
byDate[is.na(byDate)] <- 0
byDate$date <- lapply(byDate[, 1], function(x) {
as.Date(as.character(x), format = "%Y%m%d")
})
# 死亡データ
death <- fread(paste0(DATA_PATH, "death.csv"))
death[is.na(death)] <- 0
# 文言データを取得
lang <- fread(paste0(DATA_PATH, "lang.csv"))
langCode <- "ja"
# 都道府県
provinceCode <- fread(paste0(DATA_PATH, "prefectures.csv"))
provinceSelector <- provinceCode$id
names(provinceSelector) <- provinceCode$`name-ja`
provinceAttr <- fread(paste0(DATA_PATH, "Signate/prefMaster.csv"))
provinceAttr[, 都道府県略称 := 都道府県]
provinceAttr[, 都道府県略称 := gsub("県", "", 都道府県略称)]
provinceAttr[, 都道府県略称 := gsub("府", "", 都道府県略称)]
provinceAttr[, 都道府県略称 := gsub("東京都", "東京", 都道府県略称)]
# ====各都道府県のサマリーテーブル====
print("新規なし継続日数カラム作成")
zeroContinuousDay <- stack(lapply(byDate[, 2:ncol(byDate)], function(region) {
continuousDay <- 0
for (x in region) {
if (x == 0) {
continuousDay <- continuousDay + 1
} else {
continuousDay <- 0
}
}
return(continuousDay - 1)
}))
print("感染確認カラム作成")
total <- colSums(byDate[, 2:ncol(byDate)])
print("新規カラム作成")
today <- colSums(byDate[nrow(byDate), 2:ncol(byDate)])
print("昨日までカラム作成")
untilToday <- colSums(byDate[1:nrow(byDate) - 1, 2:ncol(byDate)])
print("感染者推移カラム作成")
dateSpan <- 21
diffSparkline <- sapply(2:ncol(byDate), function(i) {
# 新規値
value <- byDate[(nrow(byDate) - dateSpan):nrow(byDate), i, with = F][[1]]
# 累計値
cumsumValue <- c(cumsum(byDate[, i, with = F])[(nrow(byDate) - dateSpan):nrow(byDate)])[[1]]
# 日付
date <- byDate[(nrow(byDate) - dateSpan):nrow(byDate), 1, with = F][[1]]
colorMapSetting <- rep("#E7ADA6", length(value))
colorMapSetting[length(value)] <- darkRed
namesSetting <- as.list(date)
names(namesSetting) <- 0:(length(value) - 1)
# 新規
diff <- sparkline(
values = value,
type = "bar",
elementId = paste0("newCasesSparkline",i),
chartRangeMin = 0,
width = 80,
tooltipFormat = "{{offset:names}}<br><span style='color: {{color}}'>●</span> 新規{{value}}名",
tooltipValueLookups = list(
names = namesSetting
),
colorMap = colorMapSetting
)
# 累計
cumsumSpk <- sparkline(
values = cumsumValue,
type = "line",
elementId = paste0("cumulativeCasesSparkline", i),
width = 80,
fillColor = F,
lineColor = darkRed,
tooltipFormat = "<span style='color: {{color}}'>●</span> 累計{{y}}名"
)
return(as.character(htmltools::as.tags(spk_composite(diff, cumsumSpk))))
})
print("新規回復者カラム作成")
mhlwSummary <- fread(file = "50_Data/MHLW/summary.csv")
mhlwSummary$日付 <- as.Date(as.character(mhlwSummary$日付), "%Y%m%d")
mhlwSummary[order(日付), dischargedDiff := 退院者 - shift(退院者), by = "都道府県名"]
print("回復推移")
dischargedDiffSparkline <- sapply(colnames(byDate)[2:48], function(region) {
data <- mhlwSummary[`都道府県名` == region]
# 新規
span <- nrow(data) - dateSpan
value <- data$dischargedDiff[ifelse(span < 0, 0, span):nrow(data)]
# 日付
date <- data$日付[ifelse(span < 0, 0, span):nrow(data)]
namesSetting <- as.list(date)
names(namesSetting) <- 0:(length(date) - 1)
if (length(value) > 0) {
diff <- spk_chr(
values = value,
type = "bar",
elementId = paste0("recover", region),
width = 80,
barColor = middleGreen,
tooltipFormat = "{{offset:names}}<br><span style='color: {{color}}'>●</span> 新規回復{{value}}名",
tooltipValueLookups = list(
names = namesSetting
)
)
} else {
diff <- NA
}
return(diff)
})
print("死亡カラム作成")
deathByRegion <- stack(colSums(death[, 2:ncol(byDate)]))
print("感染者内訳")
detailSparkLineDt <- mhlwSummary[日付 == max(日付)]
detailSparkLine <- sapply(detailSparkLineDt$都道府県名, function(region) {
# 速報値との差分処理
regionNew <- ifelse(region == "空港検疫", "検疫職員", region)
confirmed <- ifelse(total[names(total) == regionNew][[1]] > detailSparkLineDt[都道府県名 == region, 陽性者],
total[names(total) == regionNew][[1]],
detailSparkLineDt[都道府県名 == region, 陽性者]
)
spk_chr(
type = "pie",
elementId = paste0("casesDetailPie", region),
values = c(
confirmed - sum(detailSparkLineDt[都道府県名 == region, .(入院中, 退院者, 死亡者)], na.rm = T) -
ifelse(region == "クルーズ船", 40, 0),
detailSparkLineDt[都道府県名 == region, 入院中],
detailSparkLineDt[都道府県名 == region, 退院者],
detailSparkLineDt[都道府県名 == region, 死亡者]
),
sliceColors = c(middleRed, middleYellow, middleGreen, darkNavy),
tooltipFormat = '<span style="color: {{color}}">●</span> {{offset:names}}<br>{{value}} 名 ({{percent.1}}%)',
tooltipValueLookups = list(
names = list(
"0" = "情報待ち陽性者",
"1" = "入院者",
"2" = "回復者",
"3" = "死亡者"
)
)
)
})
print("二倍時間集計")
dt <- byDate[, 2:ncol(byDate)]
halfCount <- colSums(dt) / 2
dt <- cumsum(dt)
doubleTimeDay <- lapply(seq(halfCount), function(index) {
prefDt <- dt[, index, with = F]
nrow(prefDt[c(prefDt > halfCount[index])])
})
names(doubleTimeDay) <- names(dt)
# 回復者総数
totalDischarged <- mhlwSummary[日付 == max(日付), .(都道府県名, 退院者)]
colnames(totalDischarged) <- c("region", "totalDischarged")
print("都道府県別PCRデータ作成")
mhlwSummary[, 前日比 := 検査人数 - shift(検査人数), by = c("都道府県名")]
mhlwSummary[, 週間平均移動 := round(frollmean(前日比, 7), 0), by = c("都道府県名")]
mhlwSummary[, 陽性率 := round(陽性者 / 検査人数 * 100, 1)]
pcrByRegionToday <- mhlwSummary[日付 == max(日付)]
pcrDiffSparkline <- sapply(pcrByRegionToday$都道府県名, function(region) {
data <- mhlwSummary[都道府県名 == region]
# 新規
span <- nrow(data) - dateSpan
value <- data$前日比[ifelse(span < 0, 0, span):nrow(data)]
# 日付
date <- data$日付[ifelse(span < 0, 0, span):nrow(data)]
namesSetting <- as.list(date)
names(namesSetting) <- 0:(length(date) - 1)
if (length(value) > 0) {
diff <- spk_chr(
values = value,
type = "bar",
elementId = paste0("pcrDetail", region),
width = 80,
barColor = middleYellow,
tooltipFormat = "{{offset:names}}<br><span style='color: {{color}}'>●</span> 新規{{value}}",
tooltipValueLookups = list(
names = namesSetting
)
)
} else {
diff <- NA
}
return(diff)
})
positiveRatioSparkline <- sapply(pcrByRegionToday$都道府県名, function(region) {
data <- mhlwSummary[都道府県名 == region]
# 新規
span <- nrow(data) - dateSpan
value <- data$陽性率[ifelse(span < 0, 0, span):nrow(data)]
# 日付
date <- data$日付[ifelse(span < 0, 0, span):nrow(data)]
namesSetting <- as.list(date)
names(namesSetting) <- 0:(length(date) - 1)
if (length(value) > 0) {
diff <- spk_chr(
values = value,
type = "line",
elementId = paste0("positiveRatio", region),
width = 80,
lineColor = darkRed,
fillColor = "#f2b3aa",
tooltipFormat = "{{offset:names}}<br><span style='color: {{color}}'>●</span> 陽性率:{{y}}%",
tooltipValueLookups = list(
names = namesSetting
)
)
} else {
diff <- NA
}
return(diff)
})
pcrByRegionToday$検査数推移 <- pcrDiffSparkline
pcrByRegionToday$陽性率推移 <- positiveRatioSparkline
print("テーブル作成")
totalToday <- paste(sprintf("%06d", total), total, today, sep = "|")
mergeDt <- data.table(
region = names(total),
count = total,
today = today,
totalToday = totalToday,
untilToday = untilToday,
diff = diffSparkline,
dischargeDiff = "",
detailBullet = "",
death = deathByRegion$values,
zeroContinuousDay = zeroContinuousDay$values,
doubleTimeDay = doubleTimeDay
)
mergeDt <- merge(mergeDt, totalDischarged, all.x = T, sort = F)
signateSub <- provinceAttr[, .(都道府県略称, 人口)]
colnames(signateSub) <- c("region", "population")
mergeDt <- merge(mergeDt, signateSub, all.x = T, sort = F)
source(file = "00_System/CreatePerMillion.R")
byDateConfirmed <- getLatestWeekValue(byDate)
latestOneWeekDiff <- (byDateConfirmed$today / (mergeDt$population / 100000)) - (byDateConfirmed$yesterday / (mergeDt$population / 100000))
latestOneWeekDiff <- lapply(latestOneWeekDiff, diff2Icon)
mergeDt[, perHundredThousand := paste0(
sprintf("%02d", rank(round(byDateConfirmed$today / (population / 100000), 1), ties.method = "first")),
"|",
round(byDateConfirmed$today / (population / 100000), 1),
latestOneWeekDiff
)]
mergeDt$perHundredThousand[48:51] <- "99|0 <i style='color:#001f3f;' class=\"fa fa-lock\"></i>"
mergeDt[, perMillionDeath := round(death / (population / 1000000), 0)]
for (i in mergeDt$region) {
mergeDt[region == i]$dischargeDiff <- dischargedDiffSparkline[i][[1]]
mergeDt[region == i]$detailBullet <- detailSparkLine[i][[1]]
}
# グルーピング
groupList <- list(
"北海道・東北" = provinceAttr[都道府県コード %in% 1:7]$都道府県略称,
"関東" = provinceAttr[都道府県コード %in% 8:14]$都道府県略称,
"中部" = provinceAttr[都道府県コード %in% 15:23]$都道府県略称,
"近畿" = provinceAttr[都道府県コード %in% 24:30]$都道府県略称,
"中国" = provinceAttr[都道府県コード %in% 31:35]$都道府県略称,
"四国" = provinceAttr[都道府県コード %in% 36:39]$都道府県略称,
"九州・沖縄" = provinceAttr[都道府県コード %in% 40:47]$都道府県略称,
"他" = colnames(byDate)[(ncol(byDate) - 3):ncol(byDate)]
)
mergeDt$group = ""
for (i in seq(nrow(mergeDt))) {
mergeDt[i]$group <- names(which(lapply(groupList, function(x) { mergeDt$region[i] %in% x }) == T))
}
# Rt value
source(file = "00_System/CreateRtColumn.R")
mergeDt$Rt <- createRtColumn(byDate[1:(nrow(byDate)-1)])$display
pcrByRegionToday[, `:=` (dischargedDiff = NULL)]
mergeDt <- merge(mergeDt, pcrByRegionToday, by.x = "region", by.y = "都道府県名", all.x = T, no.dups = T, sort = F)
active <- mergeDt$陽性者 - mergeDt$退院者 - ifelse(is.na(mergeDt$死亡者), 0, mergeDt$死亡者)
mergeDt[, `:=` (日付 = NULL, 陽性者 = NULL, 入院中 = NULL, 退院者 = NULL, 死亡者 = NULL, 確認中 = NULL, 分類 = NULL)]
mergeDt[, 百万人あたり := round(検査人数 / (population / 1000000), 0)]
mergeDt[, population := NULL]
# 現在患者数
mergeDt$active <- active
mergeDt[active < 0, active := 0] # チャーター便の単独対応
mergeDt[region == "クルーズ船", active := active - 40] # クルーズ船の単独対応
# 13個特定警戒都道府県
alertPref <-
c(
# "東京",
# "大阪",
# "北海道",
# "茨城",
# "埼玉",
# "千葉",
# "神奈川",
# "石川",
# "岐阜",
# "愛知",
# "京都",
# "三重",
# "兵庫",
# "福岡",
# "沖縄"
)
for(i in seq(nrow(mergeDt))) {
if (mergeDt[i]$region %in% alertPref) {
mergeDt[i]$region <- paste0("<i style='color:#DD4B39;' class=\"fa fa-exclamation-triangle\"></i>", "<span style='float:right;'>", mergeDt[i]$region, "</span>")
} else if (mergeDt[i]$active == 0 && !is.na(mergeDt[i]$active)) {
mergeDt[i]$region <- paste0("<i style='color:#01A65A;' class=\"fa fa-check-circle\"></i>", "<span style='float:right;'>", mergeDt[i]$region, "</span>")
} else {
mergeDt[i]$region <- paste0("<span style='float:right;'>", mergeDt[i]$region, "</span>")
}
}
# 自治体名前ソート用
prefNameId <- sprintf('%02d', seq(2:ncol(byDate)))
mergeDt[, region := paste0(prefNameId, "|", region)]
# オーダー
# setorder(mergeDt, - count)
# 読み取り時のエラーを回避するため
mergeDt[, diff := gsub("\\n", "", diff)]
mergeDt[, dischargeDiff := gsub("\\n", "", dischargeDiff)]
mergeDt[, detailBullet := gsub("\\n", "", detailBullet)]
mergeDt[, 検査数推移 := gsub("\\n", "", 検査数推移)]
mergeDt[, 陽性率推移 := gsub("\\n", "", 陽性率推移)]
# クルーズ船とチャーター便データ除外
# mergeDt <- mergeDt[!grepl(pattern = paste0(lang[[langCode]][35:36], collapse = "|"), x = mergeDt$region)]
print("テーブル出力")
fwrite(x = mergeDt, file = paste0(DATA_PATH, "Generated/resultSummaryTable.ja.csv"), sep = "@", quote = F)
source(file = "00_System/CreateTable.Translate.R")
# ====マップ用のデータ作成====
dt <- data.frame(date = byDate$date)
for (i in 2:ncol(byDate)) {
dt[, i] <- cumsum(byDate[, i, with = F])
}
dt <- reshape2::melt(dt, id.vars = "date")
dt <- data.table(dt)
mapDt <- dt[!(variable %in% c("クルーズ船", "伊客船", "チャーター便", "検疫職員"))]
# マップデータ用意
mapDt <- merge(x = mapDt, y = provinceCode, by.x = "variable", by.y = "name-ja", all = T)
mapDt <- merge(x = mapDt, y = provinceAttr, by.x = "variable", by.y = "都道府県略称", all = T)
# 必要なカラムを保存
mapDt <- mapDt[, .(date, variable, 都道府県, `name-en`, value, regions, lat, lng)]
# カラム名変更
colnames(mapDt) <- c("date", "ja", "full_ja", "en", "count", "regions", "lat", "lng")
fwrite(x = mapDt, file = paste0(DATA_PATH, "result.map.csv"))
# ====COVID DATA HUB====
source(file = "00_System/Generate.covid19datahub.R")
# ====Value for display====
vaccine <- fread("50_Data/MHLW/vaccine.csv")
vaccine[, `:=` (
medical_second = medical_second_pfizer + medical_second_moderna + medical_second_astrazeneca,
elderly_second = (elderly_second_pfizer + elderly_second_moderna + elderly_second_astrazeneca)
+ (worker_second_pfizer + worker_second_moderna + worker_second_astrazeneca)
- (duplicate_second_pfizer + duplicate_second_moderna + duplicate_second_astrazeneca)
)]
vaccine_complete <- sum(vaccine[, .(medical_second + elderly_second)])
average_7_vaccine <- round(mean(tail(vaccine[, .(medical_second + elderly_second)], n = 7)$V1))
data_for_display <- data.frame(
key = c("vaccine_complete", "average_7_vaccine"),
value = c(vaccine_complete, average_7_vaccine)
)
fwrite(x = data_for_display, "50_Data/data_for_display.csv")