-
Notifications
You must be signed in to change notification settings - Fork 21
/
pretrain_BreastPathQ.py
364 lines (280 loc) · 14.1 KB
/
pretrain_BreastPathQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
Train Multi-Resolution Self-Supervision - BreastPathQ
"""
from __future__ import print_function
import argparse
import os
import time
import random
from tqdm import tqdm
import torch.backends.cudnn as cudnn
import numpy as np
import torch
from torch.utils.data import Dataset, random_split
import torch.optim as optim
import torch.nn as nn
from util import AverageMeter
from torchvision import transforms
from dataset import DatasetWSIs
import models.net as net
from models.optimiser.RAdam.lookahead import Lookahead
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
def train(args, model, classifier, train_loader, criterion, optimizer, epoch):
# Switch to train mode
model.train()
classifier.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
total_feats = []
total_targets = []
end = time.time()
for batch_idx, (input1, input2, input3, target) in enumerate(tqdm(train_loader, disable=False)):
# Get inputs and target
input1, input2, input3, target = input1.float(), input2.float(), input3.float(), target.long()
# Reshape augmented tensors
input1, input2, input3, target = input1.reshape(-1, 3, args.tile_h, args.tile_w), input2.reshape(-1, 3, args.tile_h, args.tile_w), input3.reshape(-1, 3, args.tile_h, args.tile_w), target.view(-1, 1).reshape(-1, )
# Move the variables to Cuda
input1, input2, input3, target = input1.cuda(), input2.cuda(), input3.cuda(), target.cuda()
# compute output ###############################
feats = model(input1, input2, input3)
output = classifier(feats)
loss = criterion(output, target)
# compute gradient and do SGD step #############
optimizer.zero_grad()
loss.backward()
optimizer.step()
# compute loss and accuracy ####################
batch_size = target.size(0)
losses.update(loss.item(), batch_size)
pred = torch.argmax(output, dim=1)
acc.update(torch.sum(target == pred).item() / batch_size, batch_size)
# Save features
total_feats.append(feats)
total_targets.append(target)
# measure elapsed time
torch.cuda.synchronize()
batch_time.update(time.time() - end)
end = time.time()
# print statistics and write summary every N batch
if (batch_idx + 1) % args.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch, batch_idx + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses,
acc=acc))
final_feats = torch.cat(total_feats).detach()
final_targets = torch.cat(total_targets).detach()
return losses.avg, acc.avg, final_feats, final_targets
def validate(args, model, classifier, val_loader, criterion, epoch):
# switch to evaluate mode
model.eval()
classifier.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
with torch.no_grad():
end = time.time()
for batch_idx, (input1, input2, input3, target) in enumerate(tqdm(val_loader, disable=False)):
# Get inputs and target
input1, input2, input3, target = input1.float(), input2.float(), input3.float(), target.long()
# Reshape augmented tensors
input1, input2, input3, target = input1.reshape(-1, 3, args.tile_h, args.tile_w), input2.reshape(-1, 3, args.tile_h, args.tile_w), input3.reshape(-1, 3, args.tile_h, args.tile_w), target.view(-1, 1).reshape(-1, )
# Move the variables to Cuda
input1, input2, input3, target = input1.cuda(), input2.cuda(), input3.cuda(), target.cuda()
# compute output ###############################
feats = model(input1, input2, input3)
output = classifier(feats)
loss = criterion(output, target)
# compute loss and accuracy ####################
batch_size = target.size(0)
losses.update(loss.item(), batch_size)
pred = torch.argmax(output, dim=1)
acc.update(torch.sum(target == pred).item() / batch_size, batch_size)
# measure elapsed time
torch.cuda.synchronize()
batch_time.update(time.time() - end)
end = time.time()
# print statistics and write summary every N batch
if (batch_idx + 1) % args.print_freq == 0:
print('Val: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch, batch_idx + 1, len(val_loader), batch_time=batch_time, data_time=data_time, loss=losses,
acc=acc))
return losses.avg, acc.avg
def parse_args():
parser = argparse.ArgumentParser('Argument for training')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=10, help='save frequency')
parser.add_argument('--gpu', default='0, 1', help='GPU id to use.')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use.')
parser.add_argument('--seed', type=int, default=42, help='seed for initializing training.')
# model definition
parser.add_argument('--model', type=str, default='resnet18', help='choice of network architecture - resnet18/resnet50.')
parser.add_argument('--num_classes', type=int, default=6, help='# of classes.')
parser.add_argument('--num_epoch', type=int, default=250, help='epochs to train for.')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size. - 64/16')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate - 0.01(Lookahead+SGD with Nestrov)')
parser.add_argument('--weight_decay', default=1e-4, type=float,
help='weight decay/weights regularizer for sgd. - 1e-4')
parser.add_argument('--beta1', default=0.9, type=float, help='momentum for sgd, beta1 for adam.')
parser.add_argument('--beta2', default=0.999, type=float, help=' beta2 for adam.')
# Data paths
parser.add_argument('--train_image_pth', default='/home/srinidhi/Research/Data/Cellularity/WSIs/train/',
help='path to train images WSIs')
parser.add_argument('--output_pth', default='/home/srinidhi/Research/Data/Cellularity/WSIs/output/',
help='path to save tiles for visualization')
parser.add_argument('--model_save_pth', type=str,
default='/home/srinidhi/Research/Code/Git_Hub/SSL_CR_Histo/Save_Results/',
help='path to save model')
parser.add_argument('--save_loss', type=str,
default='/home/srinidhi/Research/Code/Git_Hub/SSL_CR_Histo/Save_Results/',
help='path to save loss')
parser.add_argument('--resume', default='/home/srinidhi/Research/Code/Git_Hub/SSL_CR_Histo/Save_Results/', type=str,
metavar='PATH', help='path to latest checkpoint - model.pth (default: none)')
# WSI tiling parameters
parser.add_argument('--tile_w', default=256, type=int, help='patch size width')
parser.add_argument('--tile_h', default=256, type=int, help='patch size height')
parser.add_argument('--tile_stride_w', default=128, type=int, help='stride width dx @lowest resolution')
parser.add_argument('--tile_stride_h', default=128, type=int, help='stride height dy @lowest resolution')
parser.add_argument('--lwst_level_idx', default=1, type=int, help='Select Lowest level for patch indexing')
args = parser.parse_args()
return args
def main():
# parse the args
args = parse_args()
# Set the loader
train_dataset = DatasetWSIs(args.train_image_pth, args.output_pth, args.tile_h, args.tile_w, args.tile_stride_h,
args.tile_stride_w, args.lwst_level_idx)
# Train and validation split
train_dataset, val_dataset = random_split(train_dataset, (len(train_dataset) - 3000, 3000))
# train/val loader
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True)
# num of samples
n_data = len(train_dataset)
print('number of training samples: {}'.format(n_data))
n_data = len(val_dataset)
print('number of validation samples: {}'.format(n_data))
# set the model
model = net.TripletNet(args.model)
in_features = 256
classifier = net.Classifier(in_features * 3, args.num_classes)
# Multi-GPU
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
classifier = torch.nn.DataParallel(classifier)
# loss fn
criterion = nn.CrossEntropyLoss()
if torch.cuda.is_available():
model = model.cuda()
classifier = classifier.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
# Optimiser & scheduler
optimizer = optim.SGD(list(model.parameters()) + list(classifier.parameters()), lr=args.lr,
momentum=args.beta1, weight_decay=args.weight_decay, nesterov=True)
scheduler = Lookahead(optimizer, la_steps=5, la_alpha=0.5)
###################
# Training Model
start_epoch = 1
prev_best_val_loss = float('inf')
'check resume from a checkpoint'
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
del checkpoint
torch.cuda.empty_cache()
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Start log (writing into XL sheet)
with open(os.path.join(args.save_loss, 'train_results.csv'), 'w') as f:
f.write('epoch, train_loss, train_acc, val_loss, val_acc\n')
# Routine
for epoch in range(start_epoch, args.num_epoch + 1):
print("==> training...")
time_start = time.time()
train_losses, train_acc, final_feats, final_targets = train(args, model, classifier, train_loader, criterion, optimizer, epoch)
print('Epoch time: {:.2f} s.'.format(time.time() - time_start))
print("==> validation...")
val_losses, val_acc = validate(args, model, classifier, val_loader, criterion, epoch)
# Log results
with open(os.path.join(args.save_loss, 'train_results.csv'), 'a') as f:
f.write('%03d,%0.6f,%0.6f,%0.6f,%0.6f,\n' % ((epoch + 1), train_losses, train_acc, val_losses, val_acc))
'adjust learning rate --- Note that step should be called after validate()'
scheduler.step()
# Save model every 10 epochs
if epoch % args.save_freq == 0:
print('==> Saving...')
state = {
'args': args,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'train_loss': train_losses,
'train_acc': train_acc,
}
torch.save(state, '{}/model_{}.pt'.format(args.model_save_pth, epoch))
# Save model for the best val
if val_losses < prev_best_val_loss:
print('==> Saving...')
state = {
'args': args,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'train_loss': train_losses,
'train_acc': train_acc,
}
torch.save(state, '{}/best_model_{}.pt'.format(args.model_save_pth, epoch))
prev_best_val_loss = val_losses
# T-sne Visualization
final_feats = final_feats.to('cpu')
final_feats = final_feats.numpy()
final_targets = final_targets.to('cpu')
final_targets = final_targets.numpy()
np.save('{}/best_pre_trained_feats_{}'.format(args.model_save_pth, epoch), final_feats)
np.save('{}/best_pre_trained_targets_{}'.format(args.model_save_pth, epoch), final_targets)
# T-sne Visualization
tsne = TSNE()
Y = tsne.fit_transform(final_feats)
plt.figure(figsize=(8, 8))
colors = 'r', 'g', 'b', 'c', 'm', 'y'
target_names = ['0', '1', '2', '3', '4', '5']
target_ids = range(len(target_names))
for i, c, label in zip(target_ids, colors, target_names):
plt.scatter(Y[final_targets==i, 0], Y[final_targets==i, 1], c=c, label=label)
plt.legend()
plt.savefig('{}/best_tsne_feats_{}.png'.format(args.model_save_pth, epoch), dpi=300)
# help release GPU memory
del state
torch.cuda.empty_cache()
if __name__ == "__main__":
args = parse_args()
print(vars(args))
# Force the pytorch to create context on the specific device
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
if args.seed:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.gpu:
torch.cuda.manual_seed_all(args.seed)
# Main function
main()