-
Notifications
You must be signed in to change notification settings - Fork 8
/
Fgw.c
475 lines (412 loc) · 14.5 KB
/
Fgw.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/* Interface code for George Woltman's gwnum library
Copyright 2004, 2005, 2006, 2008, 2011, 2012 Paul Zimmermann, Alexander Kruppa,
David Cleaver.
Contains code based on the GWNUM library,
copyright 2002-2005 George Woltman, Just For Fun Software, Inc.
This file is part of the ECM Library.
The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h>
#include <stdio.h>
#include <math.h> /* for rint */
#include <gmp.h>
#include "ecm-gmp.h"
#include "ecm.h"
#include "ecm-impl.h"
#define ADD_UNDERSCORES
#include "gwdbldbl.h"
#include "gwnum.h"
#include "cpuid.h"
void __gxx_personality_v0()
{
exit (EXIT_FAILURE);
}
void __cxa_guard_acquire ()
{
return;
}
void __cxa_guard_release ()
{
return;
}
/* With the following 2 functions, we try to find a representation of an
input number in the form of z = k*b^n+c. If such a representation was
found, set the the appropriate values and return 1. Otherwise, set b to
zero and return 0. */
/* This function searches for a representation of z of the form k*b^n+c */
int
kbnc_z (double *k, unsigned long *b, unsigned long *n, signed long *c, mpz_t z)
{
int exp = 1;
int check_it_out = 0;
int ret = 0;
mpz_t diff;
mpz_t abs_diff;
mpz_t b_n; /* this will = base^exp */
mpz_t k_b_n; /* this will = k*b^n */
mpz_t test_k;
mpz_t max_k;
mpz_t lhs; /* used for finding the k value */
mpz_t rhs; /* used for finding the k value */
mpz_t base;
mpz_t base_min;
mpz_t base_max;
/* this puts a bound on how large our C value can be */
int max_diff = 8388607;
/* make sure we have a place to put our results */
if (k == NULL || b == NULL || n == NULL || c == NULL)
return 0;
/* make sure the input meets some sort of minimum size requirement.
The gwnum library reports ES1_CANNOT_DO_QUICKLY for number < 2^350 */
if (mpz_sizeinbase(z, 2) < 350)
{
*b = 0;
return 0;
}
mpz_init (diff);
mpz_init (abs_diff);
mpz_init (b_n);
mpz_init (k_b_n);
mpz_init (lhs);
mpz_init (rhs);
mpz_init (test_k);
mpz_init (base);
mpz_init_set_ui (base_min, 2);
mpz_init_set_ui (base_max, 10000);
/* this puts a bound on how large of a k value we want to find */
mpz_init_set_str (max_k, "562949953421312", 10);
/* when dividing: z/(base^exp) this will give us a possible k value */
/* we want a quick test to see if this might be a viable k value */
/* so, we want this k value to be close to an integer */
/* ie, test_k = 13.99999, is pretty close to the integer 14 */
/* since it is "pretty close", we can test this k value. */
/* whereas test_k = 13.5689, is not "pretty close" to an integer */
/* so, we will not run extra tests with this k value */
/* should we change this based on the size of z? */
/* for now, the code checks to see whether test_k is with 1/1000 of an integer */
for (mpz_set (base, base_min); mpz_cmp (base, base_max) <= 0;
mpz_add_ui (base, base, 1))
{
exp = (mpz_sizeinbase (z, 2) - 1) / (mpz_sizeinbase (base, 2) - 1) + 1;
mpz_pow_ui (b_n, base, exp); /* base^exp should be > z here */
while (1)
{
check_it_out = 0; /* 0 */
mpz_tdiv_q (test_k, z, b_n);
if (mpz_cmp(test_k, max_k) > 0)
break;
/* check to see if test_k is "pretty close" to the next smallest
integer: z/b_n - test_k <= 1/1000 # z/b_n should be > test_k here
z/b_n <= 1/1000 + test_k
1000*z/b_n <= 1 + 1000*test_k
if (1000*z <= b_n + 1000*b_n*test_k) */
mpz_mul_ui (lhs, z, 1000);
mpz_mul (rhs, b_n, test_k);
mpz_mul_ui (rhs, rhs, 1000);
mpz_add (rhs, rhs, b_n);
if (mpz_cmp (lhs, rhs) <= 0)
check_it_out = 1;
/* check to see if test_k is "pretty close" to the next largest
integer */
if (!check_it_out)
{
mpz_add_ui (test_k, test_k, 1);
/* test_k - z/b_n <= 1/1000 # test_k should be > z/b_n here */
/* test_k <= 1/1000 + z/b_n */
/* test_k - 1/1000 <= z/b_n */
/* 1000*test_k - 1 <= 1000*z/b_n */
/* if (1000*b_n*test_k - b_n <= 1000*z) */
mpz_mul (lhs, b_n, test_k);
mpz_mul_ui (lhs, lhs, 1000);
mpz_sub (lhs, lhs, b_n);
mpz_mul_ui (rhs, z, 1000);
if (mpz_cmp (lhs, rhs) <= 0)
check_it_out = 1;
}
if (check_it_out)
{
mpz_mul (k_b_n, b_n, test_k);
mpz_sub (diff, z, k_b_n);
mpz_abs (abs_diff, diff);
if (mpz_cmp_ui (abs_diff, max_diff) <= 0)
{
/* make sure k and c are relatively prime */
if (mpz_gcd_ui (NULL, test_k, mpz_get_ui (diff)) == 1)
{
/* we are done!!! */
*k = mpz_get_d (test_k);
*b = mpz_get_ui (base);
*n = exp;
*c = mpz_get_si (diff);
ret = 1;
goto end_kbnc;
}
else
{
*b = 0;
ret = 0;
goto end_kbnc;
}
}
}
mpz_divexact (b_n, b_n, base);
exp--;
}
}
/* if we get down here, then we couldn't find a representation k*b^n + c */
end_kbnc:
mpz_clear (diff);
mpz_clear (abs_diff);
mpz_clear (b_n);
mpz_clear (k_b_n);
mpz_clear (lhs);
mpz_clear (rhs);
mpz_clear (test_k);
mpz_clear (max_k);
mpz_clear (base);
mpz_clear (base_min);
mpz_clear (base_max);
return ret;
}
/* This function searches for a nice representation of z
We are trying to see if z = k*b^n + c
Some examples that we can find:
"3^218+5123"
"(199*3^218+5123)/(2*17*587*1187)"
"(199*3^218 + 5123)/2/17/587/1187" */
int
kbnc_str (double *k, unsigned long *b, unsigned long *n, signed long *c,
char *z, mpz_t num)
{
unsigned long i = 0;
int total = 0;
char strk[11];
char strb[11];
char strn[11];
char strc[11];
mpz_t tmp;
/* make sure we have a place to put our results */
if (k == NULL || b == NULL || n == NULL || c == NULL || z == NULL)
return 0;
*b = 0;
for (i = 0; i < strlen(z); i++)
{
if (z[i] == '(' || z[i] == '{' || z[i] == '[')
continue;
/* check to see if the input is k*b^n+c */
total = sscanf (z+i, "%10[0-9]*%10[0-9]^%10[0-9]%*[ +]%10[0-9]",
strk, strb, strn, strc);
if (total == 4)
{
*k = (double) strtoul (strk, NULL, 10);
*b = strtoul (strb, NULL, 10);
*n = strtoul (strn, NULL, 10);
*c = strtol (strc, NULL, 10);
break;
}
/* check to see if the input is k*b^n-c */
total = sscanf (z+i, "%10[0-9]*%10[0-9]^%10[0-9]%*[ -]%10[0-9]",
strk, strb, strn, strc);
if (total == 4)
{
*k = (double) strtoul (strk, NULL, 10);
*b = strtoul (strb, NULL, 10);
*n = strtoul (strn, NULL, 10);
*c = strtol (strc, NULL, 10);
*c *= -1;
break;
}
/* check to see if the input is b^n+c (k = 1) */
total = sscanf (z+i, "%10[0-9]^%10[0-9]%*[ +]%10[0-9]",
strb, strn, strc);
if (total == 3)
{
*k = 1.0;
*b = strtoul (strb, NULL, 10);
*n = strtoul (strn, NULL, 10);
*c = strtol (strc, NULL, 10);
break;
}
/* check to see if the input is b^n-c (k = 1) */
total = sscanf (z+i, "%10[0-9]^%10[0-9]%*[ -]%10[0-9]",
strb, strn, strc);
if (total == 3)
{
*k = 1.0;
*b = strtoul (strb, NULL, 10);
*n = strtoul (strn, NULL, 10);
*c = strtol (strc, NULL, 10);
*c *= -1;
break;
}
break;
}
/* first, check to see if we found a k*b^n+c */
if (*b)
{
/* if we did, make sure that (k*b^n+c) is divisible by num */
mpz_init_set_ui (tmp, *b);
mpz_pow_ui (tmp, tmp, *n);
mpz_mul_ui (tmp, tmp, (unsigned long) *k);
if (*c >= 0)
mpz_add_ui (tmp, tmp, *c);
else
mpz_sub_ui (tmp, tmp, (*c * -1));
if (mpz_divisible_p (tmp, num))
{
mpz_clear(tmp);
return 1;
}
}
/* set b to zero so users have a second way to know we didn't find k,b,n,c */
*b = 0;
/* if we get here, we didn't find a formula k*b^n+c for z */
return 0;
}
int
gw_ecm_stage1 (mpz_t f, curve *P, mpmod_t modulus,
double B1, double *B1done, mpz_t go, double gw_k,
unsigned long gw_b, unsigned long gw_n, signed long gw_c)
{
ecm_uint gw_B1done = *B1done;
unsigned long siz_x, siz_z, kbnc_size; /* Size of gw_x and gw_y as longs */
double tmp_bitsize;
mpz_t gw_x, gw_z, gw_A, tmp;
int youpi;
/* P->y must never be zero when calling ecm_mul */
if( P->y->_mp_size == 0 )
mpres_set_ui (P->y, 1, modulus);
if (mpz_cmp_ui (go, 1) > 0)
{
mpres_t b;
mpres_init (b, modulus);
mpres_add_ui (b, P->A, 2, modulus);
mpres_div_2exp (b, b, 2, modulus); /* b == (A+2)/4 */
ecm_mul (P->x, P->y, go, modulus, b);
mpres_clear (b, modulus);
}
outputf (OUTPUT_VERBOSE,
"Using gwnum_ecmStage1(%.0f, %d, %d, %d, %.0f, %ld)\n",
gw_k, gw_b, gw_n, gw_c, B1, gw_B1done);
/* make sure tmp has adequate allocation */
tmp_bitsize = log2(gw_k) + ((double)gw_n)*log2((double)gw_b) + 64.0;
tmp_bitsize = 64.0*ceil(tmp_bitsize/64.0); /* set to first multiple of 64 >= tmp_bitsize */
mpz_init2 (tmp, (unsigned long)tmp_bitsize);
/* construct k*b^n+c to get true size */
mpz_set_ui (tmp, gw_b);
mpz_pow_ui (tmp, tmp, gw_n);
mpz_mul_ui (tmp, tmp, (unsigned long)gw_k);
if (gw_c >= 0)
mpz_add_ui (tmp, tmp, gw_c);
else
mpz_sub_ui (tmp, tmp, (gw_c * -1));
/* kbnc_size = bits per word * # of whole words required to hold k*b^n+c */
kbnc_size = 8*sizeof(mp_size_t)*(tmp->_mp_size);
ASSERT_ALWAYS ( (unsigned long)tmp_bitsize >= kbnc_size );
/* Allocate enough memory for any residue (mod k*b^n+c) for x, z */
/* ecmstag1.c in gwnum says it needs 60 bits more than the gwnum modulus size,
so we add 64 bits here to maintain whole-word allocations for gw_x and gw_z */
mpz_init2 (gw_x, kbnc_size + 64);
mpz_init2 (gw_z, kbnc_size + 64);
mpres_init (gw_A, modulus);
mpz_clear (tmp);
/* mpres_get_z always produces non-negative integers */
mpres_get_z (gw_x, P->x, modulus);
mpres_get_z (gw_z, P->y, modulus);
mpres_get_z (gw_A, P->A, modulus);
/* gwnum_ecmStage1() wants long int pointers for size_x, size_z,
so copy them into long int vars */
siz_x = SIZ(gw_x);
siz_z = SIZ(gw_z);
/* George Woltman says that the gwnum library can handle k values up to 49
or 50 bits long, and the maximum c value is +/-8388607 */
ASSERT_ALWAYS (gw_k == rint (gw_k)); /* check that k is an integer */
ASSERT_ALWAYS (1.0 <= gw_k && gw_k <= 562949953421312.0);
ASSERT_ALWAYS (-8388607 <= gw_c && gw_c <= 8388607);
#if GMP_NUMB_BITS <= 32
youpi = gwnum_ecmStage1_u32 (gw_k, gw_b, gw_n, gw_c,
PTR(modulus->orig_modulus), ABSIZ(modulus->orig_modulus),
B1, &gw_B1done, PTR(gw_A), ABSIZ(gw_A),
PTR(gw_x), &siz_x, PTR(gw_z), &siz_z, NULL, 0);
#else /* contributed by David Cleaver */
youpi = gwnum_ecmStage1_u64 (gw_k, gw_b, gw_n, gw_c,
PTR(modulus->orig_modulus), ABSIZ(modulus->orig_modulus),
B1, &gw_B1done, PTR(gw_A), ABSIZ(gw_A),
PTR(gw_x), &siz_x, PTR(gw_z), &siz_z, NULL, 0);
#endif
/* Test that not more was written to gw_x and gw_z than we had space for */
ASSERT_ALWAYS (siz_x <= (unsigned long) ALLOC(gw_x));
ASSERT_ALWAYS (siz_z <= (unsigned long) ALLOC(gw_z));
SIZ(gw_x) = siz_x;
SIZ(gw_z) = siz_z;
outputf (OUTPUT_DEVVERBOSE,
"gw_ecm_stage1: after gwnum_ecmStage1, \n"
"B1done = %lu, x = %Zd\nz = %Zd\n",
gw_B1done, gw_x, gw_z);
/* Copy x, z back to P and clean up the temp vars */
mpres_set_z (P->x, gw_x, modulus);
mpres_set_z (P->y, gw_z, modulus);
mpz_clear (gw_A);
mpz_clear (gw_z);
mpz_clear (gw_x);
*B1done = gw_B1done;
/* Here is a list of gwnum return codes. */
/* In the case of 2 or 5, we should continue on and let gmp-ecm */
/* do stage 1, instead of throwing an error and quitting */
/* #define ES1_SUCCESS 0 *//* Success, but no factor */
/* #define ES1_FACTOR_FOUND 1 *//* Success, factor found */
/* #define ES1_CANNOT_DO_IT 2 *//* This k,b,n,c cannot be handled */
/* #define ES1_MEMORY 3 *//* Out of memory */
/* #define ES1_INTERRUPT 4 *//* Execution interrupted */
/* #define ES1_CANNOT_DO_QUICKLY 5 *//* Requires 3-multiply reduction */
/* #define ES1_HARDWARE_ERROR 6 *//* An error was detected, most */
if (youpi == ES1_CANNOT_DO_IT || youpi == ES1_CANNOT_DO_QUICKLY)
{
outputf (OUTPUT_VERBOSE,
"Notice: Did not use gwnum_ecmStage1(%.0f, %d, %d, %d, %.0f, %ld)\n",
gw_k, gw_b, gw_n, gw_c, B1, gw_B1done);
youpi = ECM_NO_FACTOR_FOUND;
goto end_of_gwecm;
}
if (youpi > 1)
{
outputf (OUTPUT_ERROR, "GW stage 1 returned code %d\n", youpi);
youpi = ECM_ERROR;
goto end_of_gwecm;
}
if (youpi == 1)
{
/* How did that happen? Since we passed z, GWNUM should not do
an extgcd and so not find factors... but if it did anyways,
we deal with it. Who's going to turn down a factor? */
outputf (OUTPUT_DEVVERBOSE,
"gw_ecm_stage1: Strange, gwnum_ecmStage1 reports a factor\n");
mpres_get_z (f, P->x, modulus);
youpi = ECM_FACTOR_FOUND_STEP1;
goto end_of_gwecm;
}
/* Normalize z (in P->y) to 1 */
youpi = ECM_NO_FACTOR_FOUND;
if (!mpres_invert (P->y, P->y, modulus)) /* Factor found? */
{
mpres_gcd (f, P->y, modulus);
youpi = ECM_FACTOR_FOUND_STEP1;
}
else
{
mpres_mul (P->x, P->x, P->y, modulus);
mpres_set_ui (P->y, 1UL, modulus);
}
end_of_gwecm:
return youpi;
}