forked from facebookresearch/GloRe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_kinetics.py
161 lines (145 loc) · 7.23 KB
/
train_kinetics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import socket
import logging
import argparse
import torch
import torch.nn.parallel
import torch.distributed as dist
import dataset
from train_model import train_model
from network.symbol_builder import get_symbol
parser = argparse.ArgumentParser(description="PyTorch Video Classification Parser")
# debug
parser.add_argument('--debug-mode', type=bool, default=True,
help="print all setting for debugging.")
# io
parser.add_argument('--dataset', default='Kinetics', choices=['Kinetics'],
help="path to dataset")
parser.add_argument('--clip-length', default=8,
help="define the length of each input sample.")
parser.add_argument('--train-frame-interval', type=int, default=8,
help="define the sampling interval between frames.")
parser.add_argument('--val-frame-interval', type=int, default=8,
help="define the sampling interval between frames.")
parser.add_argument('--task-name', type=str, default='',
help="name of current task, leave it empty for using folder name")
parser.add_argument('--model-dir', type=str, default="./exps/models",
help="set logging file.")
parser.add_argument('--log-file', type=str, default="",
help="set logging file.")
# device
parser.add_argument('--gpus', type=str, default="0,1,2,3,4,5,6,7",
help="define gpu id")
# algorithm
parser.add_argument('--network', type=str, default='RESNET50_3D_GCN_X5',
choices=['RESNET50_3D_GCN_X5', 'RESNET101_3D_GCN_X5'],
help="chose the base network")
# optimization
parser.add_argument('--pretrained', type=bool, default=True,
help="load default pretrained model.")
parser.add_argument('--fine-tune', type=bool, default=False,
help="resume training and then fine tune the classifier")
parser.add_argument('--precise-bn', type=bool, default=True,
help="try to refine batchnorm layers at the end of each training epoch.")
parser.add_argument('--resume-epoch', type=int, default=-1,
help="resume train")
parser.add_argument('--batch-size', type=int, default=64,
help="batch size")
parser.add_argument('--lr-base', type=float, default=0.05,
help="learning rate")
parser.add_argument('--lr-steps', type=list, default=[int(24*1e4*x) for x in [45,65,85]],
help="number of samples to pass before changing learning rate") # 1e6 million
parser.add_argument('--lr-factor', type=float, default=0.1,
help="reduce the learning with factor")
parser.add_argument('--save-frequency', type=float, default=1,
help="save once after N epochs")
parser.add_argument('--end-epoch', type=int, default=10000,
help="maxmium number of training epoch")
parser.add_argument('--random-seed', type=int, default=1,
help='random seed (default: 1)')
# distributed training
parser.add_argument('--backend', default='nccl', type=str,
help='Name of the backend to use')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://HOSTNAME:23455', type=str,
help='url used to set up distributed training')
def autofill(args):
# customized
if not args.task_name:
args.task_name = os.path.basename(os.getcwd())
if not args.log_file:
if os.path.exists("./exps/logs"):
if args.distributed:
with open('Hosts') as f:
content = f.readlines()
rank = int([x for x in range(len(content)) if socket.gethostname() in content[x].lower()][0])
args.log_file = "./exps/logs/{}_rank-{}.log".format(args.task_name, rank)
else:
args.log_file = "./exps/logs/{}.log".format(args.task_name)
else:
args.log_file = ".{}.log".format(args.task_name)
# fixed
args.model_prefix = os.path.join(args.model_dir, args.task_name)
return args
def set_logger(args, log_file='', debug_mode=False):
if log_file:
if not os.path.exists("./"+os.path.dirname(log_file)):
os.makedirs("./"+os.path.dirname(log_file))
handlers = [logging.FileHandler(log_file), logging.StreamHandler()]
else:
handlers = [logging.StreamHandler()]
""" add '%(filename)s:%(lineno)d %(levelname)s:' to format show source file """
logging.basicConfig(level=logging.DEBUG if debug_mode else logging.INFO,
format='%(asctime)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers = handlers)
if __name__ == "__main__":
# set args
args = parser.parse_args()
args.distributed = args.world_size > 1
args = autofill(args)
set_logger(args, log_file=args.log_file, debug_mode=args.debug_mode)
logging.info("Using pytorch {} ({})".format(torch.__version__, torch.__path__))
logging.info("Start training with args:\n" +
json.dumps(vars(args), indent=4, sort_keys=True))
# set device states
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus # before using torch
assert torch.cuda.is_available(), "CUDA is not available"
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
# distributed training
if args.distributed:
import subprocess, socket
with open('Hosts') as f:
content = f.readlines()
if socket.gethostname() == content[0].replace('\n',''):
ip_boss = (subprocess.check_output(['bash','-c', 'ifconfig | grep -oP "(?<=inet\ addr\:).[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}" | grep 100'])).decode("utf-8").replace('\n','')
else:
ip_boss = socket.gethostbyname(content[0].replace('\n',''))
dist_url = args.dist_url.replace("HOSTNAME", ip_boss)
rank = int([x for x in range(len(content)) if socket.gethostname() in content[x].lower()][0])
logging.info("Distributed Training (rank = {}), world_size = {}, backend = `{}', host-url = `{}'".format(
rank, args.world_size, args.backend, dist_url))
dist.init_process_group(backend=args.backend, init_method=dist_url, rank=rank,
group_name=args.task_name, world_size=args.world_size)
# load dataset related configuration
dataset_cfg = dataset.get_config(name=args.dataset)
# creat model with all parameters initialized
assert (not args.fine_tune or not args.resume_epoch < 0), \
"args: `resume_epoch' must be defined for fine tuning"
net, input_conf = get_symbol(name=args.network,
pretrained=args.pretrained if args.resume_epoch < 0 else None,
print_net=False, # True if args.distributed else False,
**dataset_cfg)
# training
kwargs = {}
kwargs.update(dataset_cfg)
kwargs.update({'input_conf': input_conf})
kwargs.update(vars(args))
train_model(sym_net=net, **kwargs)