-
Notifications
You must be signed in to change notification settings - Fork 29
/
synthesize.py
126 lines (101 loc) · 4.36 KB
/
synthesize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
'''
EfficientSpeech: An On-Device Text to Speech Model
https://ieeexplore.ieee.org/abstract/document/10094639
Rowel Atienza
Apache 2.0 License
2023
'''
import re
import numpy as np
import torch
import time
from string import punctuation
from g2p_en import G2p
from text import text_to_sequence
from utils.tools import get_mask_from_lengths, synth_one_sample
def read_lexicon(lex_path):
lexicon = {}
with open(lex_path) as f:
for line in f:
temp = re.split(r"\s+", line.strip("\n"))
word = temp[0]
phones = temp[1:]
if word.lower() not in lexicon:
lexicon[word.lower()] = phones
return lexicon
def get_lexicon_and_g2p(preprocess_config):
lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])
g2p = G2p()
return lexicon, g2p
def text2phoneme(lexicon, g2p, text, preprocess_config, verbose=False):
text = text.rstrip(punctuation)
lang = preprocess_config["preprocessing"]["text"]["language"]
phones = []
words = re.split(r"([,;.\-\?\!\s+])", text)
for w in words:
if w.lower() in lexicon:
phones += lexicon[w.lower()]
elif lang == "t1":
phones += list(w.lower())
else:
phones += list(filter(lambda p: p != " ", g2p(w)))
phones = "{" + "}{".join(phones) + "}"
phones = re.sub(r"\{[^\w\s]?\}", "{sp}", phones)
phones = phones.replace("}{", " ")
if verbose:
print("Raw Text Sequence: {}".format(text))
print("Phoneme Sequence: {}".format(phones))
sequence = np.array(
text_to_sequence(
phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
)
)
return sequence
def synthesize(lexicon, g2p, args, phoneme2mel, hifigan, preprocess_config, verbose=False):
assert(args.text is not None)
if verbose:
start_time = time.time()
phoneme = np.array([text2phoneme(lexicon, g2p, args.text, preprocess_config)])
phoneme_len = np.array([len(phoneme[0])])
phoneme = torch.from_numpy(phoneme).long()
phoneme_len = torch.from_numpy(phoneme_len)
max_phoneme_len = torch.max(phoneme_len).item()
phoneme_mask = get_mask_from_lengths(phoneme_len, max_phoneme_len)
x = {"phoneme": phoneme, "phoneme_mask": phoneme_mask}
if verbose:
elapsed_time = time.time() - start_time
print("(Preprocess) time: {:.4f}s".format(elapsed_time))
start_time = time.time()
with torch.no_grad():
y = phoneme2mel(x, train=False)
if verbose:
elapsed_time = time.time() - start_time
print("(Phoneme2Mel) Synthesizing MEL time: {:.4f}s".format(elapsed_time))
mel_pred = y["mel"]
mel_pred_len = y["mel_len"]
return synth_one_sample(mel_pred, mel_pred_len, vocoder=hifigan,
preprocess_config=preprocess_config, wav_path=args.wav_path)
def load_module(args, model, preprocess_config):
print("Loading model checkpoint ...", args.checkpoint)
model = model.load_from_checkpoint(args.checkpoint,
preprocess_config=preprocess_config,
lr=args.lr,
weight_decay=args.weight_decay,
max_epochs=args.max_epochs,
depth=args.depth,
n_blocks=args.n_blocks,
block_depth=args.block_depth,
reduction=args.reduction,
head=args.head,
embed_dim=args.embed_dim,
kernel_size=args.kernel_size,
decoder_kernel_size=args.decoder_kernel_size,
expansion=args.expansion,
hifigan_checkpoint=args.hifigan_checkpoint,
infer_device=args.infer_device,
verbose=args.verbose)
model.eval()
phoneme2mel = model.phoneme2mel
model.hifigan.eval()
hifigan = model.hifigan
return phoneme2mel, hifigan