-
Notifications
You must be signed in to change notification settings - Fork 54
/
leia.py
539 lines (439 loc) · 18.1 KB
/
leia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
''' LeIA - Léxico para Inferência Adaptada
https://github.com/rafjaa/LeIA
Este projeto é um fork do léxico e ferramenta para análise de
sentimentos VADER (Valence Aware Dictionary and sEntiment Reasoner)
adaptado para textos em português.
Autor do VADER: C.J. Hutto
Repositório: https://github.com/cjhutto/vaderSentiment
'''
import re
import math
import unicodedata
from itertools import product
import os
PACKAGE_DIRECTORY = os.path.dirname(os.path.abspath(__file__))
# Empirically derived mean sentiment intensity rating increase for booster words
# TODO: Portuguese update
B_INCR = 0.293
B_DECR = -0.293
# Empirically derived mean sentiment intensity rating increase for using ALLCAPs to emphasize a word
# TODO: Portuguese update
C_INCR = 0.733
N_SCALAR = -0.74
# For removing punctuation
REGEX_REMOVE_PUNCTUATION = re.compile('[%s]' % re.escape('!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'))
PUNC_LIST = [
".", "!", "?", ",", ";", ":", "-", "'", "\"", "...",
"—", "–", "!?", "?!", "!!", "!!!", "??", "???", "?!?",
"!?!", "?!?!", "!?!?"
]
# Negations (Portuguese)
NEGATE = [t.strip() for t in open(
os.path.join(PACKAGE_DIRECTORY, 'lexicons', 'negate.txt')
)]
# Booster/dampener 'intensifiers' or 'degree adverbs' (Portuguese)
boosters = []
for boost in open(os.path.join(PACKAGE_DIRECTORY, 'lexicons', 'booster.txt')):
parts = boost.strip().split(' ')
boosters.append([' '.join(parts[:-1]), parts[-1]])
BOOSTER_DICT = {}
for t, v in boosters:
BOOSTER_DICT[t] = B_INCR if v == 'INCR' else B_DECR
# Check for special case idioms containing lexicon words
# TODO: Portuguese
SPECIAL_CASE_IDIOMS = {}
def negated(input_words, include_nt=True):
"""
Determine if input contains negation words
"""
input_words = [str(w).lower() for w in input_words]
neg_words = []
neg_words.extend(NEGATE)
for word in neg_words:
if word in input_words:
return True
# if include_nt:
# for word in input_words:
# if "n't" in word:
# return True
return False
def normalize(score, alpha=15):
"""
Normalize the score to be between -1 and 1 using an alpha that
approximates the max expected value
"""
norm_score = score / math.sqrt((score * score) + alpha)
if norm_score < -1.0:
return -1.0
elif norm_score > 1.0:
return 1.0
else:
return norm_score
def allcap_differential(words):
"""
Check whether just some words in the input are ALL CAPS
:param list words: The words to inspect
:returns: `True` if some but not all items in `words` are ALL CAPS
"""
is_different = False
allcap_words = 0
for word in words:
if word.isupper():
allcap_words += 1
cap_differential = len(words) - allcap_words
if 0 < cap_differential < len(words):
is_different = True
return is_different
def scalar_inc_dec(word, valence, is_cap_diff):
"""
Check if the preceding words increase, decrease, or negate/nullify the
valence
"""
scalar = 0.0
word_lower = word.lower()
if word_lower in BOOSTER_DICT:
scalar = BOOSTER_DICT[word_lower]
if valence < 0:
scalar *= -1
# Check if booster/dampener word is in ALLCAPS (while others aren't)
if word.isupper() and is_cap_diff:
if valence > 0:
scalar += C_INCR
else:
scalar -= C_INCR
return scalar
class SentiText(object):
"""
Identify sentiment-relevant string-level properties of input text.
"""
def __init__(self, text):
if not isinstance(text, str):
text = str(text).encode('utf-8')
self.text = text
self.words_and_emoticons = self._words_and_emoticons()
# Doesn't separate words from adjacent
# punctuation (keeps emoticons & contractions)
self.is_cap_diff = allcap_differential(self.words_and_emoticons)
def _words_plus_punc(self):
"""
Returns mapping of form:
{
'cat,': 'cat',
',cat': 'cat',
}
"""
no_punc_text = REGEX_REMOVE_PUNCTUATION.sub('', self.text)
# Removes punctuation (but loses emoticons & contractions)
words_only = no_punc_text.split()
# Remove singletons
words_only = set(w for w in words_only if len(w) > 1)
# The product gives ('cat', ',') and (',', 'cat')
punc_before = {''.join(p): p[1] for p in product(PUNC_LIST, words_only)}
punc_after = {''.join(p): p[0] for p in product(words_only, PUNC_LIST)}
words_punc_dict = punc_before
words_punc_dict.update(punc_after)
return words_punc_dict
def _words_and_emoticons(self):
"""
Removes leading and trailing puncutation
Leaves contractions and most emoticons
Does not preserve punc-plus-letter emoticons (e.g. :D)
"""
wes = self.text.split()
words_punc_dict = self._words_plus_punc()
wes = [we for we in wes if len(we) > 1]
for i, we in enumerate(wes):
if we in words_punc_dict:
wes[i] = words_punc_dict[we]
return wes
class SentimentIntensityAnalyzer(object):
"""
Give a sentiment intensity score to sentences.
"""
def __init__(
self,
lexicon_file=os.path.join(
PACKAGE_DIRECTORY,
'lexicons',
'vader_lexicon_ptbr.txt'
),
emoji_lexicon=os.path.join(
PACKAGE_DIRECTORY,
'lexicons',
'emoji_utf8_lexicon_ptbr.txt'
)
):
with open(lexicon_file, encoding='utf-8') as f:
self.lexicon_full_filepath = f.read()
self.lexicon = self.make_lex_dict()
with open(emoji_lexicon, encoding='utf-8') as f:
self.emoji_full_filepath = f.read()
self.emojis = self.make_emoji_dict()
def make_lex_dict(self):
"""
Convert lexicon file to a dictionary
"""
lex_dict = {}
for line in self.lexicon_full_filepath.split('\n'):
if len(line) < 1:
continue
(word, measure) = line.strip().split('\t')[0:2]
lex_dict[word] = float(measure)
return lex_dict
def make_emoji_dict(self):
"""
Convert emoji lexicon file to a dictionary
"""
emoji_dict = {}
for line in self.emoji_full_filepath.split('\n'):
if len(line) < 1:
continue
(emoji, description) = line.strip().split('\t')[0:2]
emoji_dict[emoji] = description
return emoji_dict
def polarity_scores(self, text):
"""
Return a float for sentiment strength based on the input text.
Positive values are positive valence, negative value are negative
valence.
"""
# Remove acentos
text = unicodedata.normalize('NFKD', text).encode('ASCII', 'ignore').decode('ASCII')
# convert emojis to their textual descriptions
text_token_list = text.split()
text_no_emoji_lst = []
for token in text_token_list:
if token in self.emojis:
# get the textual description
description = self.emojis[token]
text_no_emoji_lst.append(description)
else:
text_no_emoji_lst.append(token)
text = " ".join(x for x in text_no_emoji_lst)
sentitext = SentiText(text)
sentiments = []
words_and_emoticons = sentitext.words_and_emoticons
for item in words_and_emoticons:
valence = 0
i = words_and_emoticons.index(item)
# check for vader_lexicon words that may be used as modifiers or negations
if item.lower() in BOOSTER_DICT:
sentiments.append(valence)
continue
sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments)
sentiments = self._but_check(words_and_emoticons, sentiments)
valence_dict = self.score_valence(sentiments, text)
return valence_dict
def sentiment_valence(self, valence, sentitext, item, i, sentiments):
is_cap_diff = sentitext.is_cap_diff
words_and_emoticons = sentitext.words_and_emoticons
item_lowercase = item.lower()
if item_lowercase in self.lexicon:
# Get the sentiment valence
valence = self.lexicon[item_lowercase]
# Check if sentiment laden word is in ALL CAPS (while others aren't)
if item.isupper() and is_cap_diff:
if valence > 0:
valence += C_INCR
else:
valence -= C_INCR
for start_i in range(0, 3):
# Dampen the scalar modifier of preceding words and emoticons
# (excluding the ones that immediately preceed the item) based
# on their distance from the current item.
if i > start_i and words_and_emoticons[i - (start_i + 1)].lower() not in self.lexicon:
s = scalar_inc_dec(words_and_emoticons[i - (start_i + 1)], valence, is_cap_diff)
if start_i == 1 and s != 0:
s = s * 0.95
if start_i == 2 and s != 0:
s = s * 0.9
valence = valence + s
valence = self._negation_check(valence, words_and_emoticons, start_i, i)
if start_i == 2:
valence = self._special_idioms_check(valence, words_and_emoticons, i)
# valence = self._least_check(valence, words_and_emoticons, i)
sentiments.append(valence)
return sentiments
# TODO: Portuguese
# def _least_check(self, valence, words_and_emoticons, i):
# # check for negation case using "least"
# if i > 1 and words_and_emoticons[i - 1].lower() not in self.lexicon \
# and words_and_emoticons[i - 1].lower() == "least":
# if words_and_emoticons[i - 2].lower() != "at" and words_and_emoticons[i - 2].lower() != "very":
# valence = valence * N_SCALAR
# elif i > 0 and words_and_emoticons[i - 1].lower() not in self.lexicon \
# and words_and_emoticons[i - 1].lower() == "least":
# valence = valence * N_SCALAR
# return valence
@staticmethod
def _but_check(words_and_emoticons, sentiments):
# Check for modification in sentiment due to contrastive conjunction 'but'
words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons]
for mas in ['mas', 'entretanto', 'todavia', 'porem', 'porém']:
if mas in words_and_emoticons_lower:
bi = words_and_emoticons_lower.index(mas)
for sentiment in sentiments:
si = sentiments.index(sentiment)
if si < bi:
sentiments.pop(si)
sentiments.insert(si, sentiment * 0.5)
elif si > bi:
sentiments.pop(si)
sentiments.insert(si, sentiment * 1.5)
return sentiments
@staticmethod
def _special_idioms_check(valence, words_and_emoticons, i):
words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons]
onezero = "{0} {1}".format(
words_and_emoticons_lower[i - 1],
words_and_emoticons_lower[i]
)
twoonezero = "{0} {1} {2}".format(
words_and_emoticons_lower[i - 2],
words_and_emoticons_lower[i - 1],
words_and_emoticons_lower[i]
)
twoone = "{0} {1}".format(
words_and_emoticons_lower[i - 2],
words_and_emoticons_lower[i - 1]
)
threetwoone = "{0} {1} {2}".format(
words_and_emoticons_lower[i - 3],
words_and_emoticons_lower[i - 2],
words_and_emoticons_lower[i - 1]
)
threetwo = "{0} {1}".format(
words_and_emoticons_lower[i - 3],
words_and_emoticons_lower[i - 2]
)
sequences = [onezero, twoonezero, twoone, threetwoone, threetwo]
for seq in sequences:
if seq in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[seq]
break
if len(words_and_emoticons_lower) - 1 > i:
zeroone = "{0} {1}".format(
words_and_emoticons_lower[i],
words_and_emoticons_lower[i + 1]
)
if zeroone in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[zeroone]
if len(words_and_emoticons_lower) - 1 > i + 1:
zeroonetwo = "{0} {1} {2}".format(
words_and_emoticons_lower[i],
words_and_emoticons_lower[i + 1],
words_and_emoticons_lower[i + 2]
)
if zeroonetwo in SPECIAL_CASE_IDIOMS:
valence = SPECIAL_CASE_IDIOMS[zeroonetwo]
# Check for booster/dampener bi-grams such as 'sort of' or 'kind of'
n_grams = [threetwoone, threetwo, twoone]
for n_gram in n_grams:
if n_gram in BOOSTER_DICT:
valence = valence + BOOSTER_DICT[n_gram]
return valence
@staticmethod
def _negation_check(valence, words_and_emoticons, start_i, i):
words_and_emoticons_lower = [str(w).lower() for w in words_and_emoticons]
if start_i == 0:
if negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 1 word preceding lexicon word (w/o stopwords)
valence = valence * N_SCALAR
if start_i == 1:
if words_and_emoticons_lower[i - 2] == "nunca" and \
(words_and_emoticons_lower[i - 1] == "entao" or
words_and_emoticons_lower[i - 1] == "este"):
valence = valence * 1.25
elif words_and_emoticons_lower[i - 2] == "sem" and \
words_and_emoticons_lower[i - 1] == "dúvida":
valence = valence
elif negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 2 words preceding the lexicon word position
valence = valence * N_SCALAR
if start_i == 2:
if words_and_emoticons_lower[i - 3] == "nunca" and \
(words_and_emoticons_lower[i - 2] == "entao" or words_and_emoticons_lower[i - 2] == "este") or \
(words_and_emoticons_lower[i - 1] == "entao" or words_and_emoticons_lower[i - 1] == "este"):
valence = valence * 1.25
elif words_and_emoticons_lower[i - 3] == "sem" and \
(words_and_emoticons_lower[i - 2] == "dúvida" or words_and_emoticons_lower[i - 1] == "dúvida"):
valence = valence
elif negated([words_and_emoticons_lower[i - (start_i + 1)]]): # 3 words preceding the lexicon word position
valence = valence * N_SCALAR
return valence
def _punctuation_emphasis(self, text):
# Add emphasis from exclamation points and question marks
ep_amplifier = self._amplify_ep(text)
qm_amplifier = self._amplify_qm(text)
punct_emph_amplifier = ep_amplifier + qm_amplifier
return punct_emph_amplifier
@staticmethod
def _amplify_ep(text):
# Check for added emphasis resulting from exclamation points (up to 4 of them)
ep_count = text.count("!")
if ep_count > 4:
ep_count = 4
# Empirically derived mean sentiment intensity rating increase for
# exclamation points
ep_amplifier = ep_count * 0.292
return ep_amplifier
@staticmethod
def _amplify_qm(text):
# Check for added emphasis resulting from question marks (2 or 3+)
qm_count = text.count("?")
qm_amplifier = 0
if qm_count > 1:
if qm_count <= 3:
# Empirically derived mean sentiment intensity rating increase for
# question marks
qm_amplifier = qm_count * 0.18
else:
qm_amplifier = 0.96
return qm_amplifier
@staticmethod
def _sift_sentiment_scores(sentiments):
# Want separate positive versus negative sentiment scores
pos_sum = 0.0
neg_sum = 0.0
neu_count = 0
for sentiment_score in sentiments:
if sentiment_score > 0:
pos_sum += (float(sentiment_score) + 1) # compensates for neutral words that are counted as 1
if sentiment_score < 0:
neg_sum += (float(sentiment_score) - 1) # when used with math.fabs(), compensates for neutrals
if sentiment_score == 0:
neu_count += 1
return pos_sum, neg_sum, neu_count
def score_valence(self, sentiments, text):
if sentiments:
sum_s = float(sum(sentiments))
# Compute and add emphasis from punctuation in text
punct_emph_amplifier = self._punctuation_emphasis(text)
if sum_s > 0:
sum_s += punct_emph_amplifier
elif sum_s < 0:
sum_s -= punct_emph_amplifier
compound = normalize(sum_s)
# Discriminate between positive, negative and neutral sentiment scores
pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments)
if pos_sum > math.fabs(neg_sum):
pos_sum += punct_emph_amplifier
elif pos_sum < math.fabs(neg_sum):
neg_sum -= punct_emph_amplifier
total = pos_sum + math.fabs(neg_sum) + neu_count
pos = math.fabs(pos_sum / total)
neg = math.fabs(neg_sum / total)
neu = math.fabs(neu_count / total)
else:
compound = 0.0
pos = 0.0
neg = 0.0
neu = 0.0
sentiment_dict = {
'neg': round(neg, 3),
'neu': round(neu, 3),
'pos': round(pos, 3),
'compound': round(compound, 4)
}
return sentiment_dict
if __name__ == '__main__':
pass
# TODO: tests and examples (Portuguese)