-
Notifications
You must be signed in to change notification settings - Fork 271
/
axi_serializer.sv
295 lines (273 loc) · 10.9 KB
/
axi_serializer.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Copyright (c) 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <[email protected]>
// - Andreas Kurth <[email protected]>
`include "common_cells/registers.svh"
/// Serialize all AXI transactions to a single ID (zero).
///
/// This module contains one queue with slave port IDs for the read direction and one for the write
/// direction. These queues are used to reconstruct the ID of responses at the slave port. The
/// depth of each queue is defined by `MaxReadTxns` and `MaxWriteTxns`, respectively.
module axi_serializer #(
/// Maximum number of in flight read transactions.
parameter int unsigned MaxReadTxns = 32'd0,
/// Maximum number of in flight write transactions.
parameter int unsigned MaxWriteTxns = 32'd0,
/// AXI4+ATOP ID width.
parameter int unsigned AxiIdWidth = 32'd0,
/// AXI4+ATOP request struct definition.
parameter type axi_req_t = logic,
/// AXI4+ATOP response struct definition.
parameter type axi_resp_t = logic
) (
/// Clock
input logic clk_i,
/// Asynchronous reset, active low
input logic rst_ni,
/// Slave port request
input axi_req_t slv_req_i,
/// Slave port response
output axi_resp_t slv_resp_o,
/// Master port request
output axi_req_t mst_req_o,
/// Master port response
input axi_resp_t mst_resp_i
);
typedef logic [AxiIdWidth-1:0] id_t;
typedef enum logic [1:0] {
AtopIdle = 2'b00,
AtopDrain = 2'b01,
AtopExecute = 2'b10
} state_e;
logic rd_fifo_full, rd_fifo_empty, rd_fifo_push, rd_fifo_pop,
wr_fifo_full, wr_fifo_empty, wr_fifo_push, wr_fifo_pop;
id_t b_id,
r_id, ar_id;
state_e state_q, state_d;
always_comb begin
// Default assignments
state_d = state_q;
rd_fifo_push = 1'b0;
wr_fifo_push = 1'b0;
// Default, connect the channels
mst_req_o = slv_req_i;
slv_resp_o = mst_resp_i;
// Serialize transactions -> tie downstream IDs to zero.
mst_req_o.aw.id = '0;
mst_req_o.ar.id = '0;
// Reflect upstream ID in response.
ar_id = slv_req_i.ar.id;
slv_resp_o.b.id = b_id;
slv_resp_o.r.id = r_id;
// Default, cut the AW/AR handshaking
mst_req_o.ar_valid = 1'b0;
slv_resp_o.ar_ready = 1'b0;
mst_req_o.aw_valid = 1'b0;
slv_resp_o.aw_ready = 1'b0;
unique case (state_q)
AtopIdle, AtopExecute: begin
// Wait until the ATOP response(s) have been sent back upstream.
if (state_q == AtopExecute) begin
if ((wr_fifo_empty && rd_fifo_empty) || (wr_fifo_pop && rd_fifo_pop) ||
(wr_fifo_empty && rd_fifo_pop) || (wr_fifo_pop && rd_fifo_empty)) begin
state_d = AtopIdle;
end
end
// This part lets new Transactions through, if no ATOP is underway or the last ATOP
// response has been transmitted.
if ((state_q == AtopIdle) || (state_d == AtopIdle)) begin
// Gate AR handshake with ready output of Read FIFO.
mst_req_o.ar_valid = slv_req_i.ar_valid & ~rd_fifo_full;
slv_resp_o.ar_ready = mst_resp_i.ar_ready & ~rd_fifo_full;
rd_fifo_push = mst_req_o.ar_valid & mst_resp_i.ar_ready;
if (slv_req_i.aw_valid) begin
if (slv_req_i.aw.atop[5:4] == axi_pkg::ATOP_NONE) begin
// Normal operation
// Gate AW handshake with ready output of Write FIFO.
mst_req_o.aw_valid = ~wr_fifo_full;
slv_resp_o.aw_ready = mst_resp_i.aw_ready & ~wr_fifo_full;
wr_fifo_push = mst_req_o.aw_valid & mst_resp_i.aw_ready;
end else begin
// Atomic Operation received, go to drain state, when both channels are ready
// Wait for finished or no AR beat
if (!mst_req_o.ar_valid || (mst_req_o.ar_valid && mst_resp_i.ar_ready)) begin
state_d = AtopDrain;
end
end
end
end
end
AtopDrain: begin
// Send the ATOP AW when the last open transaction terminates
if (wr_fifo_empty && rd_fifo_empty) begin
mst_req_o.aw_valid = 1'b1;
slv_resp_o.aw_ready = mst_resp_i.aw_ready;
wr_fifo_push = mst_resp_i.aw_ready;
if (slv_req_i.aw.atop[axi_pkg::ATOP_R_RESP]) begin
// Overwrite the read ID with the one from AW
ar_id = slv_req_i.aw.id;
rd_fifo_push = mst_resp_i.aw_ready;
end
if (mst_resp_i.aw_ready) begin
state_d = AtopExecute;
end
end
end
default : /* do nothing */;
endcase
// Gate B handshake with empty flag output of Write FIFO.
slv_resp_o.b_valid = mst_resp_i.b_valid & ~wr_fifo_empty;
mst_req_o.b_ready = slv_req_i.b_ready & ~wr_fifo_empty;
// Gate R handshake with empty flag output of Read FIFO.
slv_resp_o.r_valid = mst_resp_i.r_valid & ~rd_fifo_empty;
mst_req_o.r_ready = slv_req_i.r_ready & ~rd_fifo_empty;
end
fifo_v3 #(
.FALL_THROUGH ( 1'b0 ), // No fall-through as response has to come a cycle later anyway
.DEPTH ( MaxReadTxns ),
.dtype ( id_t )
) i_rd_id_fifo (
.clk_i,
.rst_ni,
.flush_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.data_i ( ar_id ),
.push_i ( rd_fifo_push ),
.full_o ( rd_fifo_full ),
.data_o ( r_id ),
.empty_o ( rd_fifo_empty ),
.pop_i ( rd_fifo_pop ),
.usage_o ( /*not used*/ )
);
// Assign as this condition is needed in FSM
assign rd_fifo_pop = slv_resp_o.r_valid & slv_req_i.r_ready & slv_resp_o.r.last;
fifo_v3 #(
.FALL_THROUGH ( 1'b0 ),
.DEPTH ( MaxWriteTxns ),
.dtype ( id_t )
) i_wr_id_fifo (
.clk_i,
.rst_ni,
.flush_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.data_i ( slv_req_i.aw.id ),
.push_i ( wr_fifo_push ),
.full_o ( wr_fifo_full ),
.data_o ( b_id ),
.empty_o ( wr_fifo_empty ),
.pop_i ( wr_fifo_pop ),
.usage_o ( /*not used*/ )
);
// Assign as this condition is needed in FSM
assign wr_fifo_pop = slv_resp_o.b_valid & slv_req_i.b_ready;
`FFARN(state_q, state_d, AtopIdle, clk_i, rst_ni)
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (AxiIdWidth >= 1) else $fatal(1, "AXI ID width must be at least 1!");
assert (MaxReadTxns >= 1)
else $fatal(1, "Maximum number of read transactions must be >= 1!");
assert (MaxWriteTxns >= 1)
else $fatal(1, "Maximum number of write transactions must be >= 1!");
end
default disable iff (~rst_ni);
aw_lost : assert property( @(posedge clk_i)
(slv_req_i.aw_valid & slv_resp_o.aw_ready |-> mst_req_o.aw_valid & mst_resp_i.aw_ready))
else $error("AW beat lost.");
w_lost : assert property( @(posedge clk_i)
(slv_req_i.w_valid & slv_resp_o.w_ready |-> mst_req_o.w_valid & mst_resp_i.w_ready))
else $error("W beat lost.");
b_lost : assert property( @(posedge clk_i)
(mst_resp_i.b_valid & mst_req_o.b_ready |-> slv_resp_o.b_valid & slv_req_i.b_ready))
else $error("B beat lost.");
ar_lost : assert property( @(posedge clk_i)
(slv_req_i.ar_valid & slv_resp_o.ar_ready |-> mst_req_o.ar_valid & mst_resp_i.ar_ready))
else $error("AR beat lost.");
r_lost : assert property( @(posedge clk_i)
(mst_resp_i.r_valid & mst_req_o.r_ready |-> slv_resp_o.r_valid & slv_req_i.r_ready))
else $error("R beat lost.");
`endif
// pragma translate_on
endmodule
`include "axi/typedef.svh"
`include "axi/assign.svh"
/// Serialize all AXI transactions to a single ID (zero), interface version.
module axi_serializer_intf #(
/// AXI4+ATOP ID width.
parameter int unsigned AXI_ID_WIDTH = 32'd0,
/// AXI4+ATOP address width.
parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
/// AXI4+ATOP data width.
parameter int unsigned AXI_DATA_WIDTH = 32'd0,
/// AXI4+ATOP user width.
parameter int unsigned AXI_USER_WIDTH = 32'd0,
/// Maximum number of in flight read transactions.
parameter int unsigned MAX_READ_TXNS = 32'd0,
/// Maximum number of in flight write transactions.
parameter int unsigned MAX_WRITE_TXNS = 32'd0
) (
/// Clock
input logic clk_i,
/// Asynchronous reset, active low
input logic rst_ni,
/// AXI4+ATOP Slave modport
AXI_BUS.Slave slv,
/// AXI4+ATOP Master modport
AXI_BUS.Master mst
);
typedef logic [AXI_ID_WIDTH -1:0] id_t;
typedef logic [AXI_ADDR_WIDTH -1:0] addr_t;
typedef logic [AXI_DATA_WIDTH -1:0] data_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
typedef logic [AXI_USER_WIDTH -1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)
`AXI_TYPEDEF_REQ_T(axi_req_t, aw_chan_t, w_chan_t, ar_chan_t)
`AXI_TYPEDEF_RESP_T(axi_resp_t, b_chan_t, r_chan_t)
axi_req_t slv_req, mst_req;
axi_resp_t slv_resp, mst_resp;
`AXI_ASSIGN_TO_REQ(slv_req, slv)
`AXI_ASSIGN_FROM_RESP(slv, slv_resp)
`AXI_ASSIGN_FROM_REQ(mst, mst_req)
`AXI_ASSIGN_TO_RESP(mst_resp, mst)
axi_serializer #(
.MaxReadTxns ( MAX_READ_TXNS ),
.MaxWriteTxns ( MAX_WRITE_TXNS ),
.AxiIdWidth ( AXI_ID_WIDTH ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t )
) i_axi_serializer (
.clk_i,
.rst_ni,
.slv_req_i ( slv_req ),
.slv_resp_o ( slv_resp ),
.mst_req_o ( mst_req ),
.mst_resp_i ( mst_resp )
);
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (AXI_ADDR_WIDTH >= 1) else $fatal(1, "AXI address width must be at least 1!");
assert (AXI_DATA_WIDTH >= 1) else $fatal(1, "AXI data width must be at least 1!");
assert (AXI_ID_WIDTH >= 1) else $fatal(1, "AXI ID width must be at least 1!");
assert (AXI_USER_WIDTH >= 1) else $fatal(1, "AXI user width must be at least 1!");
assert (MAX_READ_TXNS >= 1)
else $fatal(1, "Maximum number of read transactions must be >= 1!");
assert (MAX_WRITE_TXNS >= 1)
else $fatal(1, "Maximum number of write transactions must be >= 1!");
end
`endif
// pragma translate_on
endmodule