-
Notifications
You must be signed in to change notification settings - Fork 271
/
axi_dw_downsizer.sv
913 lines (780 loc) · 33.5 KB
/
axi_dw_downsizer.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
// Copyright 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Matheus Cavalcante <[email protected]>
// Description:
// Data width downsize conversion.
// Connects a wide master to a narrower slave.
// NOTE: The downsizer does not support WRAP bursts, and will answer with SLVERR
// upon receiving a burst of such type. The downsizer does support FIXED
// bursts, but only if they consist of a single beat; it will answer with SLVERR
// on multi-beat FIXED bursts.
module axi_dw_downsizer #(
parameter int unsigned AxiMaxReads = 1 , // Number of outstanding reads
parameter int unsigned AxiSlvPortDataWidth = 8 , // Data width of the slv port
parameter int unsigned AxiMstPortDataWidth = 8 , // Data width of the mst port
parameter int unsigned AxiAddrWidth = 1 , // Address width
parameter int unsigned AxiIdWidth = 1 , // ID width
parameter type aw_chan_t = logic, // AW Channel Type
parameter type mst_w_chan_t = logic, // W Channel Type for mst port
parameter type slv_w_chan_t = logic, // W Channel Type for slv port
parameter type b_chan_t = logic, // B Channel Type
parameter type ar_chan_t = logic, // AR Channel Type
parameter type mst_r_chan_t = logic, // R Channel Type for mst port
parameter type slv_r_chan_t = logic, // R Channel Type for slv port
parameter type axi_mst_req_t = logic, // AXI Request Type for mst ports
parameter type axi_mst_resp_t = logic, // AXI Response Type for mst ports
parameter type axi_slv_req_t = logic, // AXI Request Type for slv ports
parameter type axi_slv_resp_t = logic // AXI Response Type for slv ports
) (
input logic clk_i,
input logic rst_ni,
// Slave interface
input axi_slv_req_t slv_req_i,
output axi_slv_resp_t slv_resp_o,
// Master interface
output axi_mst_req_t mst_req_o,
input axi_mst_resp_t mst_resp_i
);
/*****************
* DEFINITIONS *
*****************/
import axi_pkg::aligned_addr;
import axi_pkg::modifiable ;
import cf_math_pkg::idx_width;
// Type used to index which adapter is handling each outstanding transaction.
localparam TranIdWidth = AxiMaxReads > 1 ? $clog2(AxiMaxReads) : 1;
typedef logic [TranIdWidth-1:0] tran_id_t;
// Data width
localparam AxiSlvPortStrbWidth = AxiSlvPortDataWidth / 8;
localparam AxiMstPortStrbWidth = AxiMstPortDataWidth / 8;
localparam AxiSlvPortMaxSize = $clog2(AxiSlvPortStrbWidth);
localparam AxiMstPortMaxSize = $clog2(AxiMstPortStrbWidth);
localparam SlvPortByteMask = AxiSlvPortStrbWidth - 1;
localparam MstPortByteMask = AxiMstPortStrbWidth - 1;
// Byte-grouped data words
typedef logic [AxiMstPortStrbWidth-1:0][7:0] mst_data_t;
typedef logic [AxiSlvPortStrbWidth-1:0][7:0] slv_data_t;
// Address width
typedef logic [AxiAddrWidth-1:0] addr_t;
// ID width
typedef logic [AxiIdWidth-1:0] id_t;
// Length of burst after upsizing
typedef logic [$clog2(AxiSlvPortStrbWidth/AxiMstPortStrbWidth) + 7:0] burst_len_t;
// Internal AXI bus
axi_mst_req_t mst_req;
axi_mst_resp_t mst_resp;
/**************
* ARBITERS *
**************/
// R
slv_r_chan_t [AxiMaxReads-1:0] slv_r_tran;
logic [AxiMaxReads-1:0] slv_r_valid_tran;
logic [AxiMaxReads-1:0] slv_r_ready_tran;
rr_arb_tree #(
.NumIn (AxiMaxReads ),
.DataType (slv_r_chan_t),
.AxiVldRdy(1'b1 ),
.ExtPrio (1'b0 ),
.LockIn (1'b1 )
) i_slv_r_arb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i(1'b0 ),
.rr_i ('0 ),
.req_i (slv_r_valid_tran ),
.gnt_o (slv_r_ready_tran ),
.data_i (slv_r_tran ),
.gnt_i (slv_req_i.r_ready ),
.req_o (slv_resp_o.r_valid),
.data_o (slv_resp_o.r ),
.idx_o (/* Unused */ )
);
logic [AxiMaxReads-1:0] mst_r_ready_tran;
assign mst_req.r_ready = |mst_r_ready_tran;
// AR
id_t arb_slv_ar_id;
logic arb_slv_ar_req;
logic arb_slv_ar_gnt;
logic [AxiMaxReads-1:0] arb_slv_ar_gnt_tran;
// Multiplex AR slave between AR and AW for the injection of atomic operations with an R response.
logic inject_aw_into_ar;
logic inject_aw_into_ar_req;
logic inject_aw_into_ar_gnt;
assign arb_slv_ar_gnt = |arb_slv_ar_gnt_tran;
rr_arb_tree #(
.NumIn (2 ),
.DataWidth (AxiIdWidth),
.ExtPrio (1'b0 ),
.AxiVldRdy (1'b1 ),
.LockIn (1'b0 )
) i_slv_ar_arb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i (1'b0 ),
.rr_i ('0 ),
.req_i ({inject_aw_into_ar_req, slv_req_i.ar_valid} ),
.gnt_o ({inject_aw_into_ar_gnt, slv_resp_o.ar_ready}),
.data_i ({slv_req_i.aw.id, slv_req_i.ar.id} ),
.req_o (arb_slv_ar_req ),
.gnt_i (arb_slv_ar_gnt ),
.data_o (arb_slv_ar_id ),
.idx_o (inject_aw_into_ar )
);
ar_chan_t [AxiMaxReads-1:0] mst_ar_tran;
id_t [AxiMaxReads-1:0] mst_ar_id;
logic [AxiMaxReads-1:0] mst_ar_valid_tran;
logic [AxiMaxReads-1:0] mst_ar_ready_tran;
tran_id_t mst_req_idx;
rr_arb_tree #(
.NumIn (AxiMaxReads),
.DataType (ar_chan_t ),
.AxiVldRdy(1'b1 ),
.ExtPrio (1'b0 ),
.LockIn (1'b1 )
) i_mst_ar_arb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i(1'b0 ),
.rr_i ('0 ),
.req_i (mst_ar_valid_tran),
.gnt_o (mst_ar_ready_tran),
.data_i (mst_ar_tran ),
.gnt_i (mst_resp.ar_ready),
.req_o (mst_req.ar_valid ),
.data_o (mst_req.ar ),
.idx_o (mst_req_idx )
);
/*****************
* ERROR SLAVE *
*****************/
axi_mst_req_t axi_err_req;
axi_mst_resp_t axi_err_resp;
axi_err_slv #(
.AxiIdWidth(AxiIdWidth ),
.Resp (axi_pkg::RESP_SLVERR),
.axi_req_t (axi_mst_req_t ),
.axi_resp_t(axi_mst_resp_t )
) i_axi_err_slv (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.test_i (1'b0 ),
.slv_req_i (axi_err_req ),
.slv_resp_o(axi_err_resp)
);
/***********
* DEMUX *
***********/
// Requests can be sent either to the error slave,
// or to the DWC's master port.
logic [AxiMaxReads-1:0] mst_req_ar_err;
logic mst_req_aw_err;
axi_demux #(
.AxiIdWidth (AxiIdWidth ),
.AxiLookBits(AxiIdWidth ),
.aw_chan_t (aw_chan_t ),
.w_chan_t (mst_w_chan_t ),
.b_chan_t (b_chan_t ),
.ar_chan_t (ar_chan_t ),
.r_chan_t (mst_r_chan_t ),
.axi_req_t (axi_mst_req_t ),
.axi_resp_t (axi_mst_resp_t),
.NoMstPorts (2 ),
.MaxTrans (AxiMaxReads ),
.SpillAw (1'b1 ) // Required to break dependency between AW and W channels
) i_axi_demux (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.test_i (1'b0 ),
.mst_reqs_o ({axi_err_req, mst_req_o} ),
.mst_resps_i ({axi_err_resp, mst_resp_i} ),
.slv_ar_select_i(mst_req_ar_err[mst_req_idx]),
.slv_aw_select_i(mst_req_aw_err ),
.slv_req_i (mst_req ),
.slv_resp_o (mst_resp )
);
/**********
* READ *
**********/
typedef enum logic [2:0] {
R_IDLE ,
R_INJECT_AW ,
R_PASSTHROUGH ,
R_INCR_DOWNSIZE,
R_SPLIT_INCR_DOWNSIZE
} r_state_e;
typedef struct packed {
ar_chan_t ar ;
logic ar_valid ;
logic ar_throw_error ;
slv_r_chan_t r ;
logic r_valid ;
burst_len_t burst_len ;
axi_pkg::size_t orig_ar_size;
logic injected_aw ;
} r_req_t;
// Write-related type, but w_req_q is referenced from Read logic
typedef struct packed {
aw_chan_t aw ;
logic aw_valid ;
logic aw_throw_error ;
burst_len_t burst_len ;
axi_pkg::len_t orig_aw_len ;
axi_pkg::burst_t orig_aw_burst;
axi_pkg::resp_t burst_resp ;
axi_pkg::size_t orig_aw_size ;
} w_req_t;
w_req_t w_req_d, w_req_q;
// Decide which downsizer will handle the incoming AXI transaction
logic [AxiMaxReads-1:0] idle_read_downsizer;
tran_id_t idx_ar_downsizer;
// Find an idle downsizer to handle this transaction
tran_id_t idx_idle_downsizer;
lzc #(
.WIDTH(AxiMaxReads)
) i_idle_lzc (
.in_i (idle_read_downsizer),
.cnt_o (idx_idle_downsizer ),
.empty_o(/* Unused */ )
);
// Is there already another downsizer handling a transaction with the same id
logic [AxiMaxReads-1:0] id_clash_downsizer;
tran_id_t idx_id_clash_downsizer;
for (genvar t = 0; t < AxiMaxReads; t++) begin: gen_id_clash
assign id_clash_downsizer[t] = arb_slv_ar_id == mst_ar_id[t] && !idle_read_downsizer[t];
end
onehot_to_bin #(
.ONEHOT_WIDTH(AxiMaxReads)
) i_id_clash_onehot_to_bin (
.onehot(id_clash_downsizer ),
.bin (idx_id_clash_downsizer)
);
// Choose an idle downsizer, unless there is an id clash
assign idx_ar_downsizer = (|id_clash_downsizer) ? idx_id_clash_downsizer : idx_idle_downsizer;
// This ID queue is used to resolve which downsizer is handling
// each outstanding read transaction.
logic [AxiMaxReads-1:0] idqueue_push;
logic [AxiMaxReads-1:0] idqueue_pop;
tran_id_t idqueue_id;
logic idqueue_valid;
id_queue #(
.ID_WIDTH(AxiIdWidth ),
.CAPACITY(AxiMaxReads),
.data_t (tran_id_t )
) i_read_id_queue (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.inp_id_i (arb_slv_ar_id ),
.inp_data_i (idx_ar_downsizer),
.inp_req_i (|idqueue_push ),
.inp_gnt_o (/* Unused */ ),
.oup_id_i (mst_resp.r.id ),
.oup_pop_i (|idqueue_pop ),
.oup_req_i (1'b1 ),
.oup_data_o (idqueue_id ),
.oup_data_valid_o(idqueue_valid ),
.oup_gnt_o (/* Unused */ ),
.exists_data_i ('0 ),
.exists_mask_i ('0 ),
.exists_req_i ('0 ),
.exists_o (/* Unused */ ),
.exists_gnt_o (/* Unused */ )
);
for (genvar t = 0; unsigned'(t) < AxiMaxReads; t++) begin: gen_read_downsizer
r_state_e r_state_d, r_state_q;
r_req_t r_req_d , r_req_q ;
// Are we idle?
assign idle_read_downsizer[t] = (r_state_q == R_IDLE) || (r_state_q == R_INJECT_AW);
// Byte-grouped data signal for the serialization step
slv_data_t r_data;
always_comb begin
// Maintain state
r_state_d = r_state_q;
r_req_d = r_req_q ;
// AR Channel
mst_ar_tran[t] = r_req_q.ar ;
mst_ar_id[t] = r_req_q.ar.id ;
mst_ar_valid_tran[t] = r_req_q.ar_valid;
// Throw an error
mst_req_ar_err[t] = r_req_q.ar_throw_error;
// R Channel
slv_r_tran[t] = r_req_q.r ;
slv_r_valid_tran[t] = r_req_q.r_valid;
idqueue_push[t] = '0;
idqueue_pop[t] = '0;
arb_slv_ar_gnt_tran[t] = 1'b0;
mst_r_ready_tran[t] = 1'b0;
// Got a grant on the AR channel
if (mst_ar_valid_tran[t] && mst_ar_ready_tran[t]) begin
r_req_d.ar_valid = 1'b0;
r_req_d.ar_throw_error = 1'b0;
end
// Initialize r_data
r_data = r_req_q.r.data;
case (r_state_q)
R_IDLE : begin
// Reset channels
r_req_d.ar = '0;
r_req_d.r = '0;
// New read request
if (arb_slv_ar_req && (idx_ar_downsizer == t)) begin
arb_slv_ar_gnt_tran[t] = 1'b1;
// Push to ID queue
idqueue_push[t] = 1'b1;
// Must inject an AW request into this upsizer
if (inject_aw_into_ar) begin
r_state_d = R_INJECT_AW;
end else begin
// Default state
r_state_d = R_PASSTHROUGH;
// Save beat
r_req_d.ar = slv_req_i.ar ;
r_req_d.ar_valid = 1'b1 ;
r_req_d.burst_len = slv_req_i.ar.len ;
r_req_d.orig_ar_size = slv_req_i.ar.size ;
r_req_d.injected_aw = 1'b0 ;
r_req_d.r.resp = axi_pkg::RESP_EXOKAY;
case (r_req_d.ar.burst)
axi_pkg::BURST_INCR : begin
// Evaluate downsize ratio
automatic addr_t size_mask = (1 << r_req_d.ar.size) - 1 ;
automatic addr_t conv_ratio = ((1 << r_req_d.ar.size) + AxiMstPortStrbWidth - 1) / AxiMstPortStrbWidth;
// Evaluate output burst length
automatic addr_t align_adj = (r_req_d.ar.addr & size_mask & ~MstPortByteMask) / AxiMstPortStrbWidth;
r_req_d.burst_len = (r_req_d.ar.len + 1) * conv_ratio - align_adj - 1 ;
if (conv_ratio != 1) begin
r_req_d.ar.size = AxiMstPortMaxSize;
if (r_req_d.burst_len <= 255) begin
r_state_d = R_INCR_DOWNSIZE ;
r_req_d.ar.len = r_req_d.burst_len;
end else begin
r_state_d = R_SPLIT_INCR_DOWNSIZE;
r_req_d.ar.len = 255 - align_adj ;
end
end
end
axi_pkg::BURST_FIXED: begin
// Single transaction
if (r_req_d.ar.len == '0) begin
// Evaluate downsize ratio
automatic addr_t size_mask = (1 << r_req_d.ar.size) - 1 ;
automatic addr_t conv_ratio = ((1 << r_req_d.ar.size) + AxiMstPortStrbWidth - 1) / AxiMstPortStrbWidth;
// Evaluate output burst length
automatic addr_t align_adj = (r_req_d.ar.addr & size_mask & ~MstPortByteMask) / AxiMstPortStrbWidth;
r_req_d.burst_len = (conv_ratio >= align_adj + 1) ? (conv_ratio - align_adj - 1) : 0;
if (conv_ratio != 1) begin
r_state_d = R_INCR_DOWNSIZE ;
r_req_d.ar.len = r_req_d.burst_len ;
r_req_d.ar.size = AxiMstPortMaxSize ;
r_req_d.ar.burst = axi_pkg::BURST_INCR;
end
end else begin
// The downsizer does not support fixed burts
r_req_d.ar_throw_error = 1'b1;
end
end
axi_pkg::BURST_WRAP: begin
// The DW converter does not support this type of burst.
r_state_d = R_PASSTHROUGH;
r_req_d.ar_throw_error = 1'b1 ;
end
endcase
end
end
end
R_INJECT_AW : begin
// Save beat
r_req_d.ar.id = w_req_q.aw.id ;
r_req_d.ar.addr = w_req_q.aw.addr ;
r_req_d.ar.size = w_req_q.orig_aw_size ;
r_req_d.ar.burst = w_req_q.orig_aw_burst;
r_req_d.ar.len = w_req_q.orig_aw_len ;
r_req_d.ar.lock = w_req_q.aw.lock ;
r_req_d.ar.cache = w_req_q.aw.cache ;
r_req_d.ar.prot = w_req_q.aw.prot ;
r_req_d.ar.qos = w_req_q.aw.qos ;
r_req_d.ar.region = w_req_q.aw.region ;
r_req_d.ar.user = w_req_q.aw.user ;
r_req_d.ar_valid = 1'b0 ; // Injected "AR"s from AW are not valid.
r_req_d.burst_len = w_req_q.orig_aw_len ;
r_req_d.orig_ar_size = w_req_q.orig_aw_size ;
r_req_d.injected_aw = 1'b1 ;
r_req_d.r.resp = axi_pkg::RESP_EXOKAY ;
// Default state
r_state_d = R_PASSTHROUGH;
case (r_req_d.ar.burst)
axi_pkg::BURST_INCR : begin
// Evaluate downsize ratio
automatic addr_t size_mask = (1 << r_req_d.ar.size) - 1 ;
automatic addr_t conv_ratio = ((1 << r_req_d.ar.size) + AxiMstPortStrbWidth - 1) / AxiMstPortStrbWidth;
// Evaluate output burst length
automatic addr_t align_adj = (r_req_d.ar.addr & size_mask & ~MstPortByteMask) / AxiMstPortStrbWidth;
r_req_d.burst_len = (r_req_d.ar.len + 1) * conv_ratio - align_adj - 1 ;
if (conv_ratio != 1) begin
r_req_d.ar.size = AxiMstPortMaxSize;
if (r_req_d.burst_len <= 255) begin
r_state_d = R_INCR_DOWNSIZE ;
r_req_d.ar.len = r_req_d.burst_len;
end else begin
r_state_d = R_SPLIT_INCR_DOWNSIZE;
r_req_d.ar.len = 255 - align_adj ;
end
end
end
axi_pkg::BURST_FIXED: begin
// Single transaction
if (r_req_d.ar.len == '0) begin
// Evaluate downsize ratio
automatic addr_t size_mask = (1 << r_req_d.ar.size) - 1 ;
automatic addr_t conv_ratio = ((1 << r_req_d.ar.size) + AxiMstPortStrbWidth - 1) / AxiMstPortStrbWidth;
// Evaluate output burst length
automatic addr_t align_adj = (r_req_d.ar.addr & size_mask & ~MstPortByteMask) / AxiMstPortStrbWidth;
r_req_d.burst_len = (conv_ratio >= align_adj + 1) ? (conv_ratio - align_adj - 1) : 0;
if (conv_ratio != 1) begin
r_state_d = R_INCR_DOWNSIZE ;
r_req_d.ar.len = r_req_d.burst_len ;
r_req_d.ar.size = AxiMstPortMaxSize ;
r_req_d.ar.burst = axi_pkg::BURST_INCR;
end
end else begin
// The downsizer does not support fixed burts
r_req_d.ar_throw_error = 1'b1;
end
end
axi_pkg::BURST_WRAP: begin
// The DW converter does not support this type of burst.
r_state_d = R_PASSTHROUGH;
r_req_d.ar_throw_error = 1'b1 ;
end
endcase
end
R_PASSTHROUGH, R_INCR_DOWNSIZE, R_SPLIT_INCR_DOWNSIZE: begin
// Got a grant on the R channel
if (slv_r_valid_tran[t] && slv_r_ready_tran[t]) begin
r_req_d.r = '0 ;
r_req_d.r_valid = 1'b0;
r_data = '0 ;
end
// Request was accepted
if (!r_req_q.ar_valid) begin
// Our turn
if ((idqueue_id == t) && idqueue_valid) begin
// Ready to accept more data
if (!slv_r_valid_tran[t] || (slv_r_valid_tran[t] && slv_r_ready_tran[t])) begin
mst_r_ready_tran[t] = 1'b1;
if (mst_resp.r_valid) begin
automatic addr_t mst_port_offset = AxiMstPortStrbWidth == 1 ? '0 : r_req_q.ar.addr[idx_width(AxiMstPortStrbWidth)-1:0];
automatic addr_t slv_port_offset = AxiSlvPortStrbWidth == 1 ? '0 : r_req_q.ar.addr[idx_width(AxiSlvPortStrbWidth)-1:0];
// Serialization
for (int b = 0; b < AxiSlvPortStrbWidth; b++) begin
if ((b >= slv_port_offset) &&
(b - slv_port_offset < (1 << r_req_q.orig_ar_size)) &&
(b + mst_port_offset - slv_port_offset < AxiMstPortStrbWidth)) begin
r_data[b] = mst_resp.r.data[8*(b + mst_port_offset - slv_port_offset) +: 8];
end
end
r_req_d.burst_len = r_req_q.burst_len - 1 ;
r_req_d.ar.len = r_req_q.ar.len - 1 ;
r_req_d.r.data = r_data ;
r_req_d.r.last = (r_req_q.burst_len == 0);
r_req_d.r.id = mst_resp.r.id ;
r_req_d.r.user = mst_resp.r.user ;
// Merge response of this beat with prior one according to precedence rules.
r_req_d.r.resp = axi_pkg::resp_precedence(r_req_q.r.resp, mst_resp.r.resp);
case (r_req_d.ar.burst)
axi_pkg::BURST_INCR: begin
r_req_d.ar.addr = aligned_addr(r_req_q.ar.addr, r_req_q.ar.size) + (1 << r_req_q.ar.size);
end
axi_pkg::BURST_FIXED: begin
r_req_d.ar.addr = r_req_q.ar.addr;
end
endcase
if (r_req_q.burst_len == 0) begin
idqueue_pop[t] = 1'b1;
end
case (r_state_q)
R_PASSTHROUGH : begin
// Forward data as soon as we can
r_req_d.r_valid = 1'b1;
end
R_INCR_DOWNSIZE, R_SPLIT_INCR_DOWNSIZE: begin
// Forward when the burst is finished, or after filling up a word
if (r_req_q.burst_len == 0 ||
(aligned_addr(r_req_d.ar.addr, r_req_q.orig_ar_size) !=
aligned_addr(r_req_q.ar.addr, r_req_q.orig_ar_size) )) begin
r_req_d.r_valid = 1'b1;
end
end
endcase
// Trigger another burst request, if needed
if (r_state_q == R_SPLIT_INCR_DOWNSIZE) begin
// Finished current burst, but whole transaction hasn't finished
if (r_req_q.ar.len == '0 && r_req_q.burst_len != '0) begin
r_req_d.ar_valid = !r_req_q.injected_aw;
r_req_d.ar.len = (r_req_d.burst_len <= 255) ? r_req_d.burst_len : 255;
end
end
end
end
end
end
if (slv_r_valid_tran[t] && slv_r_ready_tran[t]) begin
if (r_req_q.burst_len == '1) begin
r_state_d = R_IDLE;
end
end
end
endcase
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
r_state_q <= R_IDLE;
r_req_q <= '0 ;
end else begin
r_state_q <= r_state_d;
r_req_q <= r_req_d ;
end
end
end : gen_read_downsizer
/***********
* WRITE *
***********/
typedef enum logic [1:0] {
W_IDLE ,
W_PASSTHROUGH ,
W_INCR_DOWNSIZE,
W_SPLIT_INCR_DOWNSIZE
} w_state_e;
w_state_e w_state_d, w_state_q;
// This FIFO holds the number of bursts generated by each write transactions handled by this downsizer.
// This is used to forward only the correct B beats to the slave.
logic forward_b_beat_i;
logic forward_b_beat_o;
logic forward_b_beat_push;
logic forward_b_beat_pop;
logic forward_b_beat_full;
fifo_v3 #(
.DATA_WIDTH (1 ),
.DEPTH (AxiMaxReads),
.FALL_THROUGH(1'b1 )
) i_forward_b_beats_queue (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i (1'b0 ),
.testmode_i(1'b0 ),
.data_i (forward_b_beat_i ),
.push_i (forward_b_beat_push ),
.full_o (forward_b_beat_full ),
.data_o (forward_b_beat_o ),
.pop_i (forward_b_beat_pop ),
.empty_o (/* Unused */ ),
.usage_o (/* Unused */ )
);
// Byte-grouped data signal for the lane steering step
mst_data_t w_data;
always_comb begin
inject_aw_into_ar_req = 1'b0;
// i_num_b_beats default state
forward_b_beat_i = '0 ;
forward_b_beat_push = 1'b0;
forward_b_beat_pop = 1'b0;
// Maintain state
w_state_d = w_state_q;
w_req_d = w_req_q ;
// AW Channel
mst_req.aw = w_req_q.aw ;
mst_req.aw_valid = w_req_q.aw_valid;
slv_resp_o.aw_ready = '0 ;
// Throw an error.
mst_req_aw_err = w_req_q.aw_throw_error;
// W Channel
mst_req.w = '0;
mst_req.w_valid = '0;
slv_resp_o.w_ready = '0;
// Initialize w_data
w_data = '0;
// B Channel (No latency)
if (mst_resp.b_valid) begin
// Merge response of this burst with prior one according to precedence rules.
w_req_d.burst_resp = axi_pkg::resp_precedence(w_req_q.burst_resp, mst_resp.b.resp);
end
slv_resp_o.b = mst_resp.b ;
slv_resp_o.b.resp = w_req_d.burst_resp;
// Each write transaction might trigger several B beats on the master (narrow) side.
// Only forward the last B beat of each transaction.
if (forward_b_beat_o) begin
slv_resp_o.b_valid = mst_resp.b_valid ;
mst_req.b_ready = slv_req_i.b_ready;
// Got an ack on the B channel. Pop transaction.
if (mst_req.b_ready && mst_resp.b_valid) begin
forward_b_beat_pop = 1'b1;
end
end else begin
// Otherwise, just acknowlegde the B beats
slv_resp_o.b_valid = 1'b0 ;
mst_req.b_ready = 1'b1 ;
forward_b_beat_pop = mst_resp.b_valid;
end
// Got a grant on the AW channel
if (mst_req.aw_valid & mst_resp.aw_ready) begin
w_req_d.aw_valid = 1'b0;
w_req_d.aw_throw_error = 1'b0;
end
case (w_state_q)
W_PASSTHROUGH, W_INCR_DOWNSIZE, W_SPLIT_INCR_DOWNSIZE: begin
// Request was accepted
if (!w_req_q.aw_valid) begin
if (slv_req_i.w_valid) begin
automatic addr_t mst_port_offset = AxiMstPortStrbWidth == 1 ? '0 : w_req_q.aw.addr[idx_width(AxiMstPortStrbWidth)-1:0];
automatic addr_t slv_port_offset = AxiSlvPortStrbWidth == 1 ? '0 : w_req_q.aw.addr[idx_width(AxiSlvPortStrbWidth)-1:0];
// Valid output
mst_req.w_valid = !(forward_b_beat_full && w_req_q.aw.len == 0);
mst_req.w.last = w_req_q.aw.len == 0;
mst_req.w.user = slv_req_i.w.user ;
// Lane steering
for (int b = 0; b < AxiSlvPortStrbWidth; b++) begin
if ((b >= slv_port_offset) &&
(b - slv_port_offset < (1 << w_req_q.orig_aw_size)) &&
(b + mst_port_offset - slv_port_offset < AxiMstPortStrbWidth)) begin
w_data[b + mst_port_offset - slv_port_offset] = slv_req_i.w.data[8*b +: 8];
mst_req.w.strb[b + mst_port_offset - slv_port_offset] = slv_req_i.w.strb[b] ;
end
end
mst_req.w.data = w_data;
end
end
// Acknowledgment
if (mst_resp.w_ready && mst_req.w_valid) begin
w_req_d.burst_len = w_req_q.burst_len - 1;
w_req_d.aw.len = w_req_q.aw.len - 1 ;
case (w_req_d.aw.burst)
axi_pkg::BURST_INCR: begin
w_req_d.aw.addr = aligned_addr(w_req_q.aw.addr, w_req_q.aw.size) + (1 << w_req_q.aw.size);
end
axi_pkg::BURST_FIXED: begin
w_req_d.aw.addr = w_req_q.aw.addr;
end
endcase
case (w_state_q)
W_PASSTHROUGH: begin
slv_resp_o.w_ready = 1'b1;
end
W_INCR_DOWNSIZE, W_SPLIT_INCR_DOWNSIZE: begin
if (w_req_q.burst_len == 0 ||
(aligned_addr(w_req_d.aw.addr, w_req_q.orig_aw_size) !=
aligned_addr(w_req_q.aw.addr, w_req_q.orig_aw_size) )) begin
slv_resp_o.w_ready = 1'b1;
end
end
endcase
// Trigger another burst request, if needed
if (w_state_q == W_SPLIT_INCR_DOWNSIZE) begin
// Finished current burst, but whole transaction hasn't finished
if (w_req_q.aw.len == '0 && w_req_q.burst_len != '0) begin
w_req_d.aw_valid = 1'b1;
w_req_d.aw.len = (w_req_d.burst_len <= 255) ? w_req_d.burst_len : 255;
// We will receive an extraneous B beat. Ignore it.
forward_b_beat_i = 1'b0;
forward_b_beat_push = 1'b1;
end
end
if (w_req_q.burst_len == 0) begin
w_state_d = W_IDLE;
forward_b_beat_push = 1'b1;
forward_b_beat_i = 1'b1;
end
end
end
endcase
// Can start a new request as soon as w_state_d is W_IDLE
if (w_state_d == W_IDLE) begin
// Reset channels
w_req_d.aw = '0 ;
w_req_d.aw_valid = 1'b0 ;
w_req_d.aw_throw_error = 1'b0 ;
w_req_d.burst_resp = axi_pkg::RESP_EXOKAY;
if (!forward_b_beat_full) begin
if (slv_req_i.aw_valid && slv_req_i.aw.atop[axi_pkg::ATOP_R_RESP]) begin // ATOP with an R response
inject_aw_into_ar_req = 1'b1 ;
slv_resp_o.aw_ready = inject_aw_into_ar_gnt;
end else begin // Regular AW
slv_resp_o.aw_ready = 1'b1;
end
// New write request
if (slv_req_i.aw_valid && slv_resp_o.aw_ready) begin
// Default state
w_state_d = W_PASSTHROUGH;
// Save beat
w_req_d.aw = slv_req_i.aw ;
w_req_d.aw_valid = 1'b1 ;
w_req_d.burst_len = slv_req_i.aw.len ;
w_req_d.orig_aw_len = slv_req_i.aw.len ;
w_req_d.orig_aw_size = slv_req_i.aw.size ;
w_req_d.orig_aw_burst = slv_req_i.aw.burst;
case (slv_req_i.aw.burst)
axi_pkg::BURST_INCR: begin
// Evaluate downsize ratio
automatic addr_t size_mask = (1 << slv_req_i.aw.size) - 1 ;
automatic addr_t conv_ratio = ((1 << slv_req_i.aw.size) + AxiMstPortStrbWidth - 1) / AxiMstPortStrbWidth;
// Evaluate output burst length
automatic addr_t align_adj = (slv_req_i.aw.addr & size_mask & ~MstPortByteMask) / AxiMstPortStrbWidth;
w_req_d.burst_len = (slv_req_i.aw.len + 1) * conv_ratio - align_adj - 1 ;
if (conv_ratio != 1) begin
w_req_d.aw.size = AxiMstPortMaxSize;
if (w_req_d.burst_len <= 255) begin
w_state_d = W_INCR_DOWNSIZE ;
w_req_d.aw.len = w_req_d.burst_len;
end else begin
w_state_d = W_SPLIT_INCR_DOWNSIZE;
w_req_d.aw.len = 255 - align_adj ;
end
end
end
axi_pkg::BURST_FIXED: begin
// Single transaction
if (slv_req_i.aw.len == '0) begin
// Evaluate downsize ratio
automatic addr_t size_mask = (1 << slv_req_i.aw.size) - 1 ;
automatic addr_t conv_ratio = ((1 << slv_req_i.aw.size) + AxiMstPortStrbWidth - 1) / AxiMstPortStrbWidth;
// Evaluate output burst length
automatic addr_t align_adj = (slv_req_i.aw.addr & size_mask & ~MstPortByteMask) / AxiMstPortStrbWidth;
w_req_d.burst_len = (conv_ratio >= align_adj + 1) ? (conv_ratio - align_adj - 1) : 0;
if (conv_ratio != 1) begin
w_state_d = W_INCR_DOWNSIZE ;
w_req_d.aw.len = w_req_d.burst_len ;
w_req_d.aw.size = AxiMstPortMaxSize ;
w_req_d.aw.burst = axi_pkg::BURST_INCR;
end
end else begin
// The downsizer does not support fixed bursts
w_req_d.aw_throw_error = 1'b1;
end
end
axi_pkg::BURST_WRAP: begin
// The DW converter does not support this type of burst.
w_state_d = W_PASSTHROUGH;
w_req_d.aw_throw_error = 1'b1 ;
end
endcase
end
end
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
w_state_q <= W_IDLE;
w_req_q <= '0 ;
end else begin
w_state_q <= w_state_d;
w_req_q <= w_req_d ;
end
end
endmodule : axi_dw_downsizer