-
Notifications
You must be signed in to change notification settings - Fork 271
/
axi_delayer.sv
198 lines (184 loc) · 6.46 KB
/
axi_delayer.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright 2018 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <[email protected]>
// - Florian Zaruba <[email protected]>
// - Andreas Kurth <[email protected]>
/// Synthesizable module that (randomly) delays AXI channels.
module axi_delayer #(
// AXI channel types
parameter type aw_chan_t = logic,
parameter type w_chan_t = logic,
parameter type b_chan_t = logic,
parameter type ar_chan_t = logic,
parameter type r_chan_t = logic,
// AXI request & response types
parameter type axi_req_t = logic,
parameter type axi_resp_t = logic,
// delay parameters
parameter bit StallRandomInput = 0,
parameter bit StallRandomOutput = 0,
parameter int unsigned FixedDelayInput = 1,
parameter int unsigned FixedDelayOutput = 1
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
// slave port
input axi_req_t slv_req_i,
output axi_resp_t slv_resp_o,
// master port
output axi_req_t mst_req_o,
input axi_resp_t mst_resp_i
);
// AW
stream_delay #(
.StallRandom ( StallRandomInput ),
.FixedDelay ( FixedDelayInput ),
.payload_t ( aw_chan_t )
) i_stream_delay_aw (
.clk_i,
.rst_ni,
.payload_i ( slv_req_i.aw ),
.ready_o ( slv_resp_o.aw_ready ),
.valid_i ( slv_req_i.aw_valid ),
.payload_o ( mst_req_o.aw ),
.ready_i ( mst_resp_i.aw_ready ),
.valid_o ( mst_req_o.aw_valid )
);
// AR
stream_delay #(
.StallRandom ( StallRandomInput ),
.FixedDelay ( FixedDelayInput ),
.payload_t ( ar_chan_t )
) i_stream_delay_ar (
.clk_i,
.rst_ni,
.payload_i ( slv_req_i.ar ),
.ready_o ( slv_resp_o.ar_ready ),
.valid_i ( slv_req_i.ar_valid ),
.payload_o ( mst_req_o.ar ),
.ready_i ( mst_resp_i.ar_ready ),
.valid_o ( mst_req_o.ar_valid )
);
// W
stream_delay #(
.StallRandom ( StallRandomInput ),
.FixedDelay ( FixedDelayInput ),
.payload_t ( w_chan_t )
) i_stream_delay_w (
.clk_i,
.rst_ni,
.payload_i ( slv_req_i.w ),
.ready_o ( slv_resp_o.w_ready ),
.valid_i ( slv_req_i.w_valid ),
.payload_o ( mst_req_o.w ),
.ready_i ( mst_resp_i.w_ready ),
.valid_o ( mst_req_o.w_valid )
);
// B
stream_delay #(
.StallRandom ( StallRandomOutput ),
.FixedDelay ( FixedDelayOutput ),
.payload_t ( b_chan_t )
) i_stream_delay_b (
.clk_i,
.rst_ni,
.payload_i ( mst_resp_i.b ),
.ready_o ( mst_req_o.b_ready ),
.valid_i ( mst_resp_i.b_valid ),
.payload_o ( slv_resp_o.b ),
.ready_i ( slv_req_i.b_ready ),
.valid_o ( slv_resp_o.b_valid )
);
// R
stream_delay #(
.StallRandom ( StallRandomOutput ),
.FixedDelay ( FixedDelayOutput ),
.payload_t ( r_chan_t )
) i_stream_delay_r (
.clk_i,
.rst_ni,
.payload_i ( mst_resp_i.r ),
.ready_o ( mst_req_o.r_ready ),
.valid_i ( mst_resp_i.r_valid ),
.payload_o ( slv_resp_o.r ),
.ready_i ( slv_req_i.r_ready ),
.valid_o ( slv_resp_o.r_valid )
);
endmodule
`include "axi/typedef.svh"
`include "axi/assign.svh"
// interface wrapper
module axi_delayer_intf #(
// Synopsys DC requires a default value for parameters.
parameter int unsigned AXI_ID_WIDTH = 0,
parameter int unsigned AXI_ADDR_WIDTH = 0,
parameter int unsigned AXI_DATA_WIDTH = 0,
parameter int unsigned AXI_USER_WIDTH = 0,
parameter bit STALL_RANDOM_INPUT = 0,
parameter bit STALL_RANDOM_OUTPUT = 0,
parameter int unsigned FIXED_DELAY_INPUT = 1,
parameter int unsigned FIXED_DELAY_OUTPUT = 1
) (
input logic clk_i,
input logic rst_ni,
AXI_BUS.Slave slv,
AXI_BUS.Master mst
);
typedef logic [AXI_ID_WIDTH-1:0] id_t;
typedef logic [AXI_ADDR_WIDTH-1:0] addr_t;
typedef logic [AXI_DATA_WIDTH-1:0] data_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
typedef logic [AXI_USER_WIDTH-1:0] user_t;
`AXI_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(r_chan_t, data_t, id_t, user_t)
`AXI_TYPEDEF_REQ_T(axi_req_t, aw_chan_t, w_chan_t, ar_chan_t)
`AXI_TYPEDEF_RESP_T(axi_resp_t, b_chan_t, r_chan_t)
axi_req_t slv_req, mst_req;
axi_resp_t slv_resp, mst_resp;
`AXI_ASSIGN_TO_REQ(slv_req, slv)
`AXI_ASSIGN_FROM_RESP(slv, slv_resp)
`AXI_ASSIGN_FROM_REQ(mst, mst_req)
`AXI_ASSIGN_TO_RESP(mst_resp, mst)
axi_delayer #(
.aw_chan_t ( aw_chan_t ),
.w_chan_t ( w_chan_t ),
.b_chan_t ( b_chan_t ),
.ar_chan_t ( ar_chan_t ),
.r_chan_t ( r_chan_t ),
.axi_req_t ( axi_req_t ),
.axi_resp_t ( axi_resp_t ),
.StallRandomInput ( STALL_RANDOM_INPUT ),
.StallRandomOutput ( STALL_RANDOM_OUTPUT ),
.FixedDelayInput ( FIXED_DELAY_INPUT ),
.FixedDelayOutput ( FIXED_DELAY_OUTPUT )
) i_axi_delayer (
.clk_i, // Clock
.rst_ni, // Asynchronous reset active low
.slv_req_i ( slv_req ),
.slv_resp_o ( slv_resp ),
.mst_req_o ( mst_req ),
.mst_resp_i ( mst_resp )
);
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (AXI_ID_WIDTH >= 1) else $fatal(1, "AXI ID width must be at least 1!");
assert (AXI_ADDR_WIDTH >= 1) else $fatal(1, "AXI ADDR width must be at least 1!");
assert (AXI_DATA_WIDTH >= 1) else $fatal(1, "AXI DATA width must be at least 1!");
assert (AXI_USER_WIDTH >= 1) else $fatal(1, "AXI USER width must be at least 1!");
end
`endif
// pragma translate_on
endmodule