-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
physical_plan_builder.go
576 lines (540 loc) · 17.8 KB
/
physical_plan_builder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"math"
"github.com/juju/errors"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/infoschema"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/ranger"
)
const (
netWorkFactor = 1.5
netWorkStartFactor = 20.0
scanFactor = 2.0
descScanFactor = 5 * scanFactor
memoryFactor = 5.0
hashAggMemFactor = 2.0
selectionFactor = 0.8
distinctFactor = 0.8
cpuFactor = 0.9
)
// wholeTaskTypes records all possible kinds of task that a plan can return. For Agg, TopN and Limit, we will try to get
// these tasks one by one.
var wholeTaskTypes = [...]taskType{copSingleReadTaskType, copDoubleReadTaskType, rootTaskType}
var invalidTask = &rootTask{cst: math.MaxFloat64}
// getPropByOrderByItems will check if this sort property can be pushed or not. In order to simplify the problem, we only
// consider the case that all expression are columns and all of them are asc or desc.
func getPropByOrderByItems(items []*ByItems) (*requiredProp, bool) {
desc := false
cols := make([]*expression.Column, 0, len(items))
for i, item := range items {
col, ok := item.Expr.(*expression.Column)
if !ok {
return nil, false
}
cols = append(cols, col)
desc = item.Desc
if i > 0 && item.Desc != items[i-1].Desc {
return nil, false
}
}
return &requiredProp{cols: cols, desc: desc}, true
}
func (p *LogicalTableDual) findBestTask(prop *requiredProp) (task, error) {
if !prop.isEmpty() {
return invalidTask, nil
}
dual := PhysicalTableDual{RowCount: p.RowCount}.init(p.ctx, p.stats)
dual.SetSchema(p.schema)
return &rootTask{p: dual}, nil
}
// findBestTask implements LogicalPlan interface.
func (p *baseLogicalPlan) findBestTask(prop *requiredProp) (bestTask task, err error) {
// Look up the task with this prop in the task map.
// It's used to reduce double counting.
bestTask = p.getTask(prop)
if bestTask != nil {
return bestTask, nil
}
if prop.taskTp != rootTaskType {
// Currently all plan cannot totally push down.
p.storeTask(prop, invalidTask)
return invalidTask, nil
}
bestTask = invalidTask
childTasks := make([]task, 0, len(p.children))
for _, pp := range p.self.exhaustPhysicalPlans(prop) {
// find best child tasks firstly.
childTasks = childTasks[:0]
for i, child := range p.children {
childTask, err := child.findBestTask(pp.getChildReqProps(i))
if err != nil {
return nil, errors.Trace(err)
}
childTasks = append(childTasks, childTask)
}
// combine best child tasks with parent physical plan.
curTask := pp.attach2Task(childTasks...)
// get the most efficient one.
if curTask.cost() < bestTask.cost() {
bestTask = curTask
}
}
p.storeTask(prop, bestTask)
return bestTask, nil
}
// tryToGetMemTask will check if this table is a mem table. If it is, it will produce a task.
func (ds *DataSource) tryToGetMemTask(prop *requiredProp) (task task, err error) {
if !prop.isEmpty() {
return nil, nil
}
if !infoschema.IsMemoryDB(ds.DBName.L) {
return nil, nil
}
memTable := PhysicalMemTable{
DBName: ds.DBName,
Table: ds.tableInfo,
Columns: ds.Columns,
TableAsName: ds.TableAsName,
}.init(ds.ctx, ds.stats)
memTable.SetSchema(ds.schema)
memTable.Ranges = ranger.FullIntRange()
// Stop to push down these conditions.
var retPlan PhysicalPlan = memTable
if len(ds.pushedDownConds) > 0 {
sel := PhysicalSelection{
Conditions: ds.pushedDownConds,
}.init(ds.ctx, ds.stats)
sel.SetChildren(memTable)
retPlan = sel
}
return &rootTask{p: retPlan}, nil
}
// tryToGetDualTask will check if the push down predicate has false constant. If so, it will return table dual.
func (ds *DataSource) tryToGetDualTask() (task, error) {
for _, cond := range ds.pushedDownConds {
if _, ok := cond.(*expression.Constant); ok {
result, err := expression.EvalBool(ds.ctx, []expression.Expression{cond}, nil)
if err != nil {
return nil, errors.Trace(err)
}
if !result {
dual := PhysicalTableDual{}.init(ds.ctx, ds.stats)
dual.SetSchema(ds.schema)
return &rootTask{
p: dual,
}, nil
}
}
}
return nil, nil
}
// findBestTask implements the PhysicalPlan interface.
// It will enumerate all the available indices and choose a plan with least cost.
func (ds *DataSource) findBestTask(prop *requiredProp) (task, error) {
// If ds is an inner plan in an IndexJoin, the IndexJoin will generate an inner plan by itself.
// So here we do nothing.
// TODO: Add a special prop to handle IndexJoin's inner plan.
// Then we can remove forceToTableScan and forceToIndexScan.
if prop == nil {
return nil, nil
}
t := ds.getTask(prop)
if t != nil {
return t, nil
}
t, err := ds.tryToGetDualTask()
if err != nil {
return nil, errors.Trace(err)
}
if t != nil {
ds.storeTask(prop, t)
return t, nil
}
t, err = ds.tryToGetMemTask(prop)
if err != nil {
return nil, errors.Trace(err)
}
if t != nil {
ds.storeTask(prop, t)
return t, nil
}
t = invalidTask
for _, path := range ds.possibleAccessPaths {
if path.isTablePath {
tblTask, err := ds.convertToTableScan(prop, path)
if err != nil {
return nil, errors.Trace(err)
}
if tblTask.cost() < t.cost() {
t = tblTask
}
continue
}
// We will use index to generate physical plan if:
// this path's access cond is not nil or
// we have prop to match or
// this index is forced to choose.
if len(path.accessConds) > 0 || len(prop.cols) > 0 || path.forced {
idxTask, err := ds.convertToIndexScan(prop, path)
if err != nil {
return nil, errors.Trace(err)
}
if idxTask.cost() < t.cost() {
t = idxTask
}
}
}
ds.storeTask(prop, t)
return t, nil
}
func isCoveringIndex(columns []*model.ColumnInfo, indexColumns []*model.IndexColumn, pkIsHandle bool) bool {
for _, colInfo := range columns {
if pkIsHandle && mysql.HasPriKeyFlag(colInfo.Flag) {
continue
}
if colInfo.ID == model.ExtraHandleID {
continue
}
isIndexColumn := false
for _, indexCol := range indexColumns {
isFullLen := indexCol.Length == types.UnspecifiedLength || indexCol.Length == colInfo.Flen
if colInfo.Name.L == indexCol.Name.L && isFullLen {
isIndexColumn = true
break
}
}
if !isIndexColumn {
return false
}
}
return true
}
func (ds *DataSource) forceToIndexScan(idx *model.IndexInfo, remainedConds []expression.Expression) PhysicalPlan {
is := PhysicalIndexScan{
Table: ds.tableInfo,
TableAsName: ds.TableAsName,
DBName: ds.DBName,
Columns: ds.Columns,
Index: idx,
dataSourceSchema: ds.schema,
Ranges: ranger.FullNewRange(),
KeepOrder: false,
}.init(ds.ctx)
is.filterCondition = remainedConds
is.stats = ds.stats
cop := &copTask{
indexPlan: is,
}
if !isCoveringIndex(is.Columns, is.Index.Columns, is.Table.PKIsHandle) {
// On this way, it's double read case.
ts := PhysicalTableScan{Columns: ds.Columns, Table: is.Table}.init(ds.ctx)
ts.SetSchema(is.dataSourceSchema)
cop.tablePlan = ts
}
is.initSchema(ds.id, idx, cop.tablePlan != nil)
indexConds, tblConds := splitIndexFilterConditions(remainedConds, idx.Columns, ds.tableInfo)
path := &accessPath{indexFilters: indexConds, tableFilters: tblConds, countAfterIndex: math.MaxFloat64}
is.addPushedDownSelection(cop, ds, math.MaxFloat64, path)
t := finishCopTask(ds.ctx, cop)
return t.plan()
}
// If there is a table reader which needs to keep order, we should append a pk to table scan.
func (ts *PhysicalTableScan) appendExtraHandleCol(ds *DataSource) {
if len(ds.schema.TblID2Handle) > 0 {
return
}
pkInfo := model.NewExtraHandleColInfo()
ts.Columns = append(ts.Columns, pkInfo)
handleCol := ds.newExtraHandleSchemaCol()
ts.schema.Append(handleCol)
ts.schema.TblID2Handle[ds.tableInfo.ID] = []*expression.Column{handleCol}
}
// convertToIndexScan converts the DataSource to index scan with idx.
func (ds *DataSource) convertToIndexScan(prop *requiredProp, path *accessPath) (task task, err error) {
idx := path.index
is := PhysicalIndexScan{
Table: ds.tableInfo,
TableAsName: ds.TableAsName,
DBName: ds.DBName,
Columns: ds.Columns,
Index: idx,
dataSourceSchema: ds.schema,
}.init(ds.ctx)
statsTbl := ds.statisticTable
if statsTbl.Indices[idx.ID] != nil {
is.Hist = &statsTbl.Indices[idx.ID].Histogram
}
eqCount := 0
is.AccessCondition, is.Ranges, is.filterCondition, eqCount = path.accessConds, path.ranges, path.indexFilters, path.eqCondCount
rowCount := path.countAfterAccess
cop := &copTask{indexPlan: is}
if !isCoveringIndex(is.Columns, is.Index.Columns, is.Table.PKIsHandle) {
// On this way, it's double read case.
ts := PhysicalTableScan{Columns: ds.Columns, Table: is.Table}.init(ds.ctx)
ts.SetSchema(ds.schema.Clone())
cop.tablePlan = ts
// If it's parent requires single read task, return max cost.
if prop.taskTp == copSingleReadTaskType {
return &copTask{cst: math.MaxFloat64}, nil
}
} else if prop.taskTp == copDoubleReadTaskType {
// If it's parent requires double read task, return max cost.
return &copTask{cst: math.MaxFloat64}, nil
}
is.initSchema(ds.id, idx, cop.tablePlan != nil)
// Check if this plan matches the property.
matchProperty := false
if !prop.isEmpty() {
for i, col := range idx.Columns {
// not matched
if col.Name.L == prop.cols[0].ColName.L {
matchProperty = matchIndicesProp(idx.Columns[i:], prop.cols)
break
} else if i >= eqCount {
break
}
}
}
// Only use expectedCnt when it's smaller than the count we calculated.
// e.g. IndexScan(count1)->After Filter(count2). The `ds.statsAfterSelect.count` is count2. count1 is the one we need to calculate
// If expectedCnt and count2 are both zero and we go into the below `if` block, the count1 will be set to zero though it's shouldn't be.
if (matchProperty || prop.isEmpty()) && prop.expectedCnt < ds.statsAfterSelect.count {
selectivity := ds.statsAfterSelect.count / path.countAfterAccess
rowCount = math.Min(prop.expectedCnt/selectivity, rowCount)
}
is.stats = ds.stats.scaleByExpectCnt(rowCount)
cop.cst = rowCount * scanFactor
task = cop
if matchProperty {
if prop.desc {
is.Desc = true
cop.cst = rowCount * descScanFactor
}
if cop.tablePlan != nil {
cop.tablePlan.(*PhysicalTableScan).appendExtraHandleCol(ds)
}
cop.keepOrder = true
is.KeepOrder = true
is.addPushedDownSelection(cop, ds, prop.expectedCnt, path)
} else {
expectedCnt := math.MaxFloat64
if prop.isEmpty() {
expectedCnt = prop.expectedCnt
} else {
return invalidTask, nil
}
is.addPushedDownSelection(cop, ds, expectedCnt, path)
}
if prop.taskTp == rootTaskType {
task = finishCopTask(ds.ctx, task)
} else if _, ok := task.(*rootTask); ok {
return invalidTask, nil
}
return task, nil
}
func (is *PhysicalIndexScan) initSchema(id int, idx *model.IndexInfo, isDoubleRead bool) {
indexCols := make([]*expression.Column, 0, len(idx.Columns))
for _, col := range idx.Columns {
indexCols = append(indexCols, &expression.Column{FromID: id, Position: col.Offset})
}
setHandle := false
for _, col := range is.Columns {
if (mysql.HasPriKeyFlag(col.Flag) && is.Table.PKIsHandle) || col.ID == model.ExtraHandleID {
indexCols = append(indexCols, &expression.Column{FromID: id, ID: col.ID, Position: col.Offset})
setHandle = true
break
}
}
// If it's double read case, the first index must return handle. So we should add extra handle column
// if there isn't a handle column.
if isDoubleRead && !setHandle {
indexCols = append(indexCols, &expression.Column{FromID: id, ID: model.ExtraHandleID, Position: -1})
}
is.SetSchema(expression.NewSchema(indexCols...))
}
func (is *PhysicalIndexScan) addPushedDownSelection(copTask *copTask, p *DataSource, expectedCnt float64, path *accessPath) {
// Add filter condition to table plan now.
indexConds, tableConds := path.indexFilters, path.tableFilters
if indexConds != nil {
copTask.cst += copTask.count() * cpuFactor
count := path.countAfterAccess
if count >= 1.0 {
selectivity := path.countAfterIndex / path.countAfterAccess
count = is.stats.count * selectivity
}
stats := &StatsInfo{count: count}
indexSel := PhysicalSelection{Conditions: indexConds}.init(is.ctx, stats)
indexSel.SetChildren(is)
copTask.indexPlan = indexSel
}
if tableConds != nil {
copTask.finishIndexPlan()
copTask.cst += copTask.count() * cpuFactor
tableSel := PhysicalSelection{Conditions: tableConds}.init(is.ctx, p.statsAfterSelect.scaleByExpectCnt(expectedCnt))
tableSel.SetChildren(copTask.tablePlan)
copTask.tablePlan = tableSel
}
}
func matchIndicesProp(idxCols []*model.IndexColumn, propCols []*expression.Column) bool {
if len(idxCols) < len(propCols) {
return false
}
for i, col := range propCols {
if idxCols[i].Length != types.UnspecifiedLength || col.ColName.L != idxCols[i].Name.L {
return false
}
}
return true
}
func splitIndexFilterConditions(conditions []expression.Expression, indexColumns []*model.IndexColumn,
table *model.TableInfo) (indexConds, tableConds []expression.Expression) {
var pkName model.CIStr
if table.PKIsHandle {
pkInfo := table.GetPkColInfo()
if pkInfo != nil {
pkName = pkInfo.Name
}
}
var indexConditions, tableConditions []expression.Expression
for _, cond := range conditions {
if checkIndexCondition(cond, indexColumns, pkName) {
indexConditions = append(indexConditions, cond)
} else {
tableConditions = append(tableConditions, cond)
}
}
return indexConditions, tableConditions
}
// checkIndexCondition will check whether all columns of condition is index columns or primary key column.
func checkIndexCondition(condition expression.Expression, indexColumns []*model.IndexColumn, pkName model.CIStr) bool {
cols := expression.ExtractColumns(condition)
for _, col := range cols {
if pkName.L == col.ColName.L {
continue
}
isIndexColumn := false
for _, indCol := range indexColumns {
if col.ColName.L == indCol.Name.L && indCol.Length == types.UnspecifiedLength {
isIndexColumn = true
break
}
}
if !isIndexColumn {
return false
}
}
return true
}
func (ds *DataSource) forceToTableScan(pk *expression.Column) PhysicalPlan {
var ranges []*ranger.NewRange
if pk != nil {
ranges = ranger.FullIntNewRange(mysql.HasUnsignedFlag(pk.RetType.Flag))
} else {
ranges = ranger.FullIntNewRange(false)
}
ts := PhysicalTableScan{
Table: ds.tableInfo,
Columns: ds.Columns,
TableAsName: ds.TableAsName,
DBName: ds.DBName,
Ranges: ranges,
}.init(ds.ctx)
ts.SetSchema(ds.schema)
ts.stats = ds.stats
ts.filterCondition = ds.pushedDownConds
copTask := &copTask{
tablePlan: ts,
indexPlanFinished: true,
}
ts.addPushedDownSelection(copTask, ds.stats)
t := finishCopTask(ds.ctx, copTask)
return t.plan()
}
// convertToTableScan converts the DataSource to table scan.
func (ds *DataSource) convertToTableScan(prop *requiredProp, path *accessPath) (task task, err error) {
// It will be handled in convertToIndexScan.
if prop.taskTp == copDoubleReadTaskType {
return &copTask{cst: math.MaxFloat64}, nil
}
ts := PhysicalTableScan{
Table: ds.tableInfo,
Columns: ds.Columns,
TableAsName: ds.TableAsName,
DBName: ds.DBName,
}.init(ds.ctx)
ts.SetSchema(ds.schema)
var pkCol *expression.Column
if ts.Table.PKIsHandle {
if pkColInfo := ts.Table.GetPkColInfo(); pkColInfo != nil {
pkCol = expression.ColInfo2Col(ts.schema.Columns, pkColInfo)
if ds.statisticTable.Columns[pkColInfo.ID] != nil {
ts.Hist = &ds.statisticTable.Columns[pkColInfo.ID].Histogram
}
}
}
ts.Ranges = path.ranges
ts.AccessCondition, ts.filterCondition = path.accessConds, path.tableFilters
rowCount := path.countAfterAccess
copTask := &copTask{
tablePlan: ts,
indexPlanFinished: true,
}
task = copTask
matchProperty := len(prop.cols) == 1 && pkCol != nil && prop.cols[0].Equal(nil, pkCol)
// Only use expectedCnt when it's smaller than the count we calculated.
// e.g. IndexScan(count1)->After Filter(count2). The `ds.statsAfterSelect.count` is count2. count1 is the one we need to calculate
// If expectedCnt and count2 are both zero and we go into the below `if` block, the count1 will be set to zero though it's shouldn't be.
if (matchProperty || prop.isEmpty()) && prop.expectedCnt < ds.statsAfterSelect.count {
selectivity := ds.statsAfterSelect.count / rowCount
rowCount = math.Min(prop.expectedCnt/selectivity, rowCount)
}
ts.stats = ds.stats.scaleByExpectCnt(rowCount)
copTask.cst = rowCount * scanFactor
if matchProperty {
if prop.desc {
ts.Desc = true
copTask.cst = rowCount * descScanFactor
}
ts.KeepOrder = true
copTask.keepOrder = true
ts.addPushedDownSelection(copTask, ds.statsAfterSelect.scaleByExpectCnt(prop.expectedCnt))
} else {
expectedCnt := math.MaxFloat64
if prop.isEmpty() {
expectedCnt = prop.expectedCnt
} else {
return invalidTask, nil
}
ts.addPushedDownSelection(copTask, ds.statsAfterSelect.scaleByExpectCnt(expectedCnt))
}
if prop.taskTp == rootTaskType {
task = finishCopTask(ds.ctx, task)
} else if _, ok := task.(*rootTask); ok {
return invalidTask, nil
}
return task, nil
}
func (ts *PhysicalTableScan) addPushedDownSelection(copTask *copTask, stats *StatsInfo) {
// Add filter condition to table plan now.
if len(ts.filterCondition) > 0 {
copTask.cst += copTask.count() * cpuFactor
sel := PhysicalSelection{Conditions: ts.filterCondition}.init(ts.ctx, stats)
sel.SetChildren(ts)
copTask.tablePlan = sel
}
}