-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
join_reorder.go
238 lines (216 loc) · 6.22 KB
/
join_reorder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"sort"
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/sessionctx"
log "github.com/sirupsen/logrus"
)
// getCartesianJoinGroup collects all the inner join tables of a left deep join
// tree. The traversal of join tree is stopped and returns a nil group if:
// 1. reach a reordered join node, or:
// 2. reach a non-cartesian join node, or:
// 3. reach a join node which has a preferred join algorithm.
// 4. reach a straight join node.
//
// An example of left deep join tree is:
//
// "cartesian join 1"
// | \
// | "right child 1"
// |
// "cartesian join 2"
// | \
// | "right child 2"
// |
// "cartesian join ..."
// | \
// | "right child ..."
// |
// "cartesian join n"
// | \
// | "right child n"
// |
// "left deep child"
//
// The result of getCartesianJoinGroup is:
// {"left deep child", "right child n", ..., "right child 2", "right child 1"}
func getCartesianJoinGroup(p *LogicalJoin) []LogicalPlan {
if p.reordered || !p.cartesianJoin || p.preferJoinType > uint(0) || p.StraightJoin {
return nil
}
lChild := p.children[0]
rChild := p.children[1]
lhsJoinTree, ok := lChild.(*LogicalJoin)
if !ok {
return []LogicalPlan{lChild, rChild}
}
lhsJoinGroup := getCartesianJoinGroup(lhsJoinTree)
if lhsJoinGroup == nil {
return nil
}
return append(lhsJoinGroup, rChild)
}
func findColumnIndexByGroup(groups []LogicalPlan, col *expression.Column) int {
for i, plan := range groups {
if plan.Schema().Contains(col) {
return i
}
}
log.Errorf("Unknown columns %s, from id %v, position %d", col, col.FromID, col.Position)
return -1
}
type joinReOrderSolver struct {
graph []edgeList
group []LogicalPlan
visited []bool
resultJoin LogicalPlan
groupRank []*rankInfo
ctx sessionctx.Context
}
type edgeList []*rankInfo
func (l edgeList) Len() int {
return len(l)
}
func (l edgeList) Less(i, j int) bool {
return l[i].rate < l[j].rate
}
func (l edgeList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
type rankInfo struct {
nodeID int
rate float64
}
func (e *joinReOrderSolver) Less(i, j int) bool {
return e.groupRank[i].rate < e.groupRank[j].rate
}
func (e *joinReOrderSolver) Swap(i, j int) {
e.groupRank[i], e.groupRank[j] = e.groupRank[j], e.groupRank[i]
}
func (e *joinReOrderSolver) Len() int {
return len(e.groupRank)
}
// reorderJoin implements a simple join reorder algorithm. It will extract all the equal conditions and compose them to a graph.
// Then walk through the graph and pick the nodes connected by some edges to compose a join tree.
// We will pick the node with least result set as early as possible.
func (e *joinReOrderSolver) reorderJoin(group []LogicalPlan, conds []expression.Expression) {
e.graph = make([]edgeList, len(group))
e.group = group
e.visited = make([]bool, len(group))
e.resultJoin = nil
e.groupRank = make([]*rankInfo, len(group))
for i := 0; i < len(e.groupRank); i++ {
e.groupRank[i] = &rankInfo{
nodeID: i,
rate: 1.0,
}
}
for _, cond := range conds {
if f, ok := cond.(*expression.ScalarFunction); ok {
if f.FuncName.L == ast.EQ {
lCol, lok := f.GetArgs()[0].(*expression.Column)
rCol, rok := f.GetArgs()[1].(*expression.Column)
if lok && rok {
lID := findColumnIndexByGroup(group, lCol)
rID := findColumnIndexByGroup(group, rCol)
if lID != rID {
e.graph[lID] = append(e.graph[lID], &rankInfo{nodeID: rID})
e.graph[rID] = append(e.graph[rID], &rankInfo{nodeID: lID})
continue
}
}
}
id := -1
rate := 1.0
cols := expression.ExtractColumns(f)
for _, col := range cols {
idx := findColumnIndexByGroup(group, col)
if id == -1 {
switch f.FuncName.L {
case ast.EQ:
rate *= 0.1
case ast.LT, ast.LE, ast.GE, ast.GT:
rate *= 0.3
// TODO: Estimate it more precisely in future.
default:
rate *= 0.9
}
id = idx
} else {
id = -1
break
}
}
if id != -1 {
e.groupRank[id].rate *= rate
}
}
}
for _, node := range e.graph {
for _, edge := range node {
edge.rate = e.groupRank[edge.nodeID].rate
}
}
sort.Sort(e)
for _, edge := range e.graph {
sort.Sort(edge)
}
var cartesianJoinGroup []LogicalPlan
for j := 0; j < len(e.groupRank); j++ {
i := e.groupRank[j].nodeID
if !e.visited[i] {
e.resultJoin = e.group[i]
e.walkGraphAndComposeJoin(i)
cartesianJoinGroup = append(cartesianJoinGroup, e.resultJoin)
}
}
e.makeBushyJoin(cartesianJoinGroup)
}
// Make cartesian join as bushy tree.
func (e *joinReOrderSolver) makeBushyJoin(cartesianJoinGroup []LogicalPlan) {
for len(cartesianJoinGroup) > 1 {
resultJoinGroup := make([]LogicalPlan, 0, len(cartesianJoinGroup))
for i := 0; i < len(cartesianJoinGroup); i += 2 {
if i+1 == len(cartesianJoinGroup) {
resultJoinGroup = append(resultJoinGroup, cartesianJoinGroup[i])
break
}
resultJoinGroup = append(resultJoinGroup, e.newJoin(cartesianJoinGroup[i], cartesianJoinGroup[i+1]))
}
cartesianJoinGroup = resultJoinGroup
}
e.resultJoin = cartesianJoinGroup[0]
}
func (e *joinReOrderSolver) newJoin(lChild, rChild LogicalPlan) *LogicalJoin {
join := LogicalJoin{
JoinType: InnerJoin,
reordered: true,
}.init(e.ctx)
join.SetSchema(expression.MergeSchema(lChild.Schema(), rChild.Schema()))
join.SetChildren(lChild, rChild)
return join
}
// walkGraph implements a dfs algorithm. Each time it picks a edge with lowest rate, which has been sorted before.
func (e *joinReOrderSolver) walkGraphAndComposeJoin(u int) {
e.visited[u] = true
for _, edge := range e.graph[u] {
v := edge.nodeID
if !e.visited[v] {
e.resultJoin = e.newJoin(e.resultJoin, e.group[v])
e.walkGraphAndComposeJoin(v)
}
}
}