-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
gen_physical_plans.go
693 lines (638 loc) · 22.8 KB
/
gen_physical_plans.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"math"
"github.com/juju/errors"
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/expression/aggregation"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/terror"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/ranger"
)
func (p *LogicalUnionScan) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
us := PhysicalUnionScan{Conditions: p.conditions}.init(p.ctx, p.stats, prop)
return []PhysicalPlan{us}
}
func getPermutation(cols1, cols2 []*expression.Column) ([]int, []*expression.Column) {
tmpSchema := expression.NewSchema(cols2...)
permutation := make([]int, 0, len(cols1))
for i, col1 := range cols1 {
offset := tmpSchema.ColumnIndex(col1)
if offset == -1 {
return permutation, cols1[:i]
}
permutation = append(permutation, offset)
}
return permutation, cols1
}
func findMaxPrefixLen(candidates [][]*expression.Column, keys []*expression.Column) int {
maxLen := 0
for _, candidateKeys := range candidates {
matchedLen := 0
for i := range keys {
if i < len(candidateKeys) && keys[i].Equal(nil, candidateKeys[i]) {
matchedLen++
} else {
break
}
}
if matchedLen > maxLen {
maxLen = matchedLen
}
}
return maxLen
}
func (p *LogicalJoin) moveEqualToOtherConditions(offsets []int) []expression.Expression {
otherConds := make([]expression.Expression, len(p.OtherConditions))
copy(otherConds, p.OtherConditions)
for i, eqCond := range p.EqualConditions {
match := false
for _, offset := range offsets {
if i == offset {
match = true
break
}
}
if !match {
otherConds = append(otherConds, eqCond)
}
}
return otherConds
}
// Only if the input required prop is the prefix fo join keys, we can pass through this property.
func (p *PhysicalMergeJoin) tryToGetChildReqProp(prop *requiredProp) ([]*requiredProp, bool) {
lProp := &requiredProp{taskTp: rootTaskType, cols: p.LeftKeys, expectedCnt: math.MaxFloat64}
rProp := &requiredProp{taskTp: rootTaskType, cols: p.RightKeys, expectedCnt: math.MaxFloat64}
if !prop.isEmpty() {
// sort merge join fits the cases of massive ordered data, so desc scan is always expensive.
if prop.desc {
return nil, false
}
if !prop.isPrefix(lProp) && !prop.isPrefix(rProp) {
return nil, false
}
if prop.isPrefix(rProp) && p.JoinType == LeftOuterJoin {
return nil, false
}
if prop.isPrefix(lProp) && p.JoinType == RightOuterJoin {
return nil, false
}
}
return []*requiredProp{lProp, rProp}, true
}
func (p *LogicalJoin) getMergeJoin(prop *requiredProp) []PhysicalPlan {
joins := make([]PhysicalPlan, 0, len(p.leftProperties))
// The leftProperties caches all the possible properties that are provided by its children.
for _, leftCols := range p.leftProperties {
offsets, leftKeys := getPermutation(leftCols, p.LeftJoinKeys)
if len(offsets) == 0 {
continue
}
rightKeys := expression.NewSchema(p.RightJoinKeys...).ColumnsByIndices(offsets)
prefixLen := findMaxPrefixLen(p.rightProperties, rightKeys)
if prefixLen == 0 {
continue
}
leftKeys = leftKeys[:prefixLen]
rightKeys = rightKeys[:prefixLen]
offsets = offsets[:prefixLen]
mergeJoin := PhysicalMergeJoin{
JoinType: p.JoinType,
LeftConditions: p.LeftConditions,
RightConditions: p.RightConditions,
DefaultValues: p.DefaultValues,
LeftKeys: leftKeys,
RightKeys: rightKeys,
}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt))
mergeJoin.SetSchema(p.schema)
mergeJoin.OtherConditions = p.moveEqualToOtherConditions(offsets)
if reqProps, ok := mergeJoin.tryToGetChildReqProp(prop); ok {
mergeJoin.childrenReqProps = reqProps
joins = append(joins, mergeJoin)
}
}
return joins
}
func (p *LogicalJoin) getHashJoins(prop *requiredProp) []PhysicalPlan {
if !prop.isEmpty() { // hash join doesn't promise any orders
return nil
}
joins := make([]PhysicalPlan, 0, 2)
switch p.JoinType {
case SemiJoin, AntiSemiJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin, LeftOuterJoin:
joins = append(joins, p.getHashJoin(prop, 1))
case RightOuterJoin:
joins = append(joins, p.getHashJoin(prop, 0))
case InnerJoin:
joins = append(joins, p.getHashJoin(prop, 1))
joins = append(joins, p.getHashJoin(prop, 0))
}
return joins
}
func (p *LogicalJoin) getHashJoin(prop *requiredProp, innerIdx int) *PhysicalHashJoin {
chReqProps := make([]*requiredProp, 2)
chReqProps[innerIdx] = &requiredProp{expectedCnt: math.MaxFloat64}
chReqProps[1-innerIdx] = &requiredProp{expectedCnt: prop.expectedCnt}
hashJoin := PhysicalHashJoin{
EqualConditions: p.EqualConditions,
LeftConditions: p.LeftConditions,
RightConditions: p.RightConditions,
OtherConditions: p.OtherConditions,
JoinType: p.JoinType,
Concurrency: uint(p.ctx.GetSessionVars().HashJoinConcurrency),
DefaultValues: p.DefaultValues,
InnerChildIdx: innerIdx,
}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt), chReqProps...)
hashJoin.SetSchema(p.schema)
return hashJoin
}
// joinKeysMatchIndex checks if all keys match columns in index.
// It returns a slice a[] what a[i] means keys[i] is related with indexCols[a[i]].
func joinKeysMatchIndex(keys, indexCols []*expression.Column, colLengths []int) []int {
if len(indexCols) < len(keys) {
return nil
}
keyOff2IdxOff := make([]int, len(keys))
for keyOff, key := range keys {
idxOff := joinKeyMatchIndexCol(key, indexCols, colLengths)
if idxOff == -1 {
return nil
}
keyOff2IdxOff[keyOff] = idxOff
}
return keyOff2IdxOff
}
func joinKeyMatchIndexCol(key *expression.Column, indexCols []*expression.Column, colLengths []int) int {
for idxOff, idxCol := range indexCols {
if colLengths[idxOff] != types.UnspecifiedLength {
continue
}
if idxCol.ColName.L == key.ColName.L {
return idxOff
}
}
return -1
}
// When inner plan is TableReader, the last two parameter will be nil
func (p *LogicalJoin) constructIndexJoin(prop *requiredProp, innerJoinKeys, outerJoinKeys []*expression.Column, outerIdx int,
innerPlan PhysicalPlan, ranges []*ranger.NewRange, keyOff2IdxOff []int) []PhysicalPlan {
joinType := p.JoinType
outerSchema := p.children[outerIdx].Schema()
// If the order by columns are not all from outer child, index join cannot promise the order.
if !prop.allColsFromSchema(outerSchema) {
return nil
}
chReqProps := make([]*requiredProp, 2)
chReqProps[outerIdx] = &requiredProp{taskTp: rootTaskType, expectedCnt: prop.expectedCnt, cols: prop.cols, desc: prop.desc}
join := PhysicalIndexJoin{
OuterIndex: outerIdx,
LeftConditions: p.LeftConditions,
RightConditions: p.RightConditions,
OtherConditions: p.OtherConditions,
JoinType: joinType,
OuterJoinKeys: outerJoinKeys,
InnerJoinKeys: innerJoinKeys,
DefaultValues: p.DefaultValues,
innerPlan: innerPlan,
KeyOff2IdxOff: keyOff2IdxOff,
Ranges: ranges,
}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt), chReqProps...)
join.SetSchema(p.schema)
return []PhysicalPlan{join}
}
// getIndexJoinByOuterIdx will generate index join by outerIndex. OuterIdx points out the outer child.
// First of all, we'll check whether the inner child is DataSource.
// Then, we will extract the join keys of p's equal conditions. Then check whether all of them are just the primary key
// or match some part of on index. If so we will choose the best one and construct a index join.
func (p *LogicalJoin) getIndexJoinByOuterIdx(prop *requiredProp, outerIdx int) []PhysicalPlan {
innerChild := p.children[1-outerIdx]
var (
innerJoinKeys []*expression.Column
outerJoinKeys []*expression.Column
)
if outerIdx == 0 {
outerJoinKeys = p.LeftJoinKeys
innerJoinKeys = p.RightJoinKeys
} else {
innerJoinKeys = p.LeftJoinKeys
outerJoinKeys = p.RightJoinKeys
}
x, ok := innerChild.(*DataSource)
if !ok {
return nil
}
var tblPath *accessPath
for _, path := range x.possibleAccessPaths {
if path.isTablePath {
tblPath = path
break
}
}
if tblPath != nil && len(innerJoinKeys) == 1 {
pkCol := x.getPKIsHandleCol()
if pkCol != nil && innerJoinKeys[0].Equal(nil, pkCol) {
innerPlan := x.forceToTableScan(pkCol)
return p.constructIndexJoin(prop, innerJoinKeys, outerJoinKeys, outerIdx, innerPlan, nil, nil)
}
}
var (
bestIndexInfo *model.IndexInfo
rangesOfBest []*ranger.NewRange
maxUsedCols int
remainedOfBest []expression.Expression
keyOff2IdxOff []int
)
for _, path := range x.possibleAccessPaths {
if path.isTablePath {
continue
}
indexInfo := path.index
ranges, remained, tmpKeyOff2IdxOff := p.buildRangeForIndexJoin(indexInfo, x, innerJoinKeys)
// We choose the index by the number of used columns of the range, the much the better.
// Notice that there may be the cases like `t1.a=t2.a and b > 2 and b < 1`. So ranges can be nil though the conditions are valid.
// But obviously when the range is nil, we don't need index join.
if len(ranges) > 0 && len(ranges[0].LowVal) > maxUsedCols {
bestIndexInfo = indexInfo
maxUsedCols = len(ranges[0].LowVal)
rangesOfBest = ranges
remainedOfBest = remained
keyOff2IdxOff = tmpKeyOff2IdxOff
}
}
if bestIndexInfo != nil {
innerPlan := x.forceToIndexScan(bestIndexInfo, remainedOfBest)
return p.constructIndexJoin(prop, innerJoinKeys, outerJoinKeys, outerIdx, innerPlan, rangesOfBest, keyOff2IdxOff)
}
return nil
}
// buildRangeForIndexJoin checks whether this index can be used for building index join and return the range if this index is ok.
// If this index is invalid, just return nil range.
func (p *LogicalJoin) buildRangeForIndexJoin(indexInfo *model.IndexInfo, innerPlan *DataSource, innerJoinKeys []*expression.Column) (
[]*ranger.NewRange, []expression.Expression, []int) {
idxCols, colLengths := expression.IndexInfo2Cols(innerPlan.Schema().Columns, indexInfo)
if len(idxCols) == 0 {
return nil, nil, nil
}
conds, eqConds, keyOff2IdxOff := p.buildFakeEqCondsForIndexJoin(innerJoinKeys, idxCols, colLengths, innerPlan)
if len(keyOff2IdxOff) == 0 {
return nil, nil, nil
}
// After constant propagation, there won'be cases that t1.a=t2.a and t2.a=1 occur in the same time.
// And if there're cases like t1.a=t2.a and t1.a > 1, we can also guarantee that t1.a > 1 won't be chosen as access condition.
// So DetachCondAndBuildRangeForIndex won't miss the equal conditions we generate.
ranges, accesses, remained, _, err := ranger.DetachCondAndBuildRangeForIndex(p.ctx, conds, idxCols, colLengths)
if err != nil {
terror.Log(errors.Trace(err))
return nil, nil, nil
}
// We should guarantee that all the join's equal condition is used.
for _, eqCond := range eqConds {
if !expression.Contains(accesses, eqCond) {
return nil, nil, nil
}
}
return ranges, remained, keyOff2IdxOff
}
func (p *LogicalJoin) buildFakeEqCondsForIndexJoin(keys, idxCols []*expression.Column, colLengths []int,
innerPlan *DataSource) (accesses, eqConds []expression.Expression, keyOff2IdxOff []int) {
// Check whether all join keys match one column from index.
keyOff2IdxOff = joinKeysMatchIndex(keys, idxCols, colLengths)
if keyOff2IdxOff == nil {
return nil, nil, nil
}
// After predicate push down, the one side conditions of join must be the conditions that cannot be pushed down and
// cannot calculate range either. So we only need the innerPlan.pushedDownConds and the eq conditions that we generate.
// TODO: There may be a selection that block the index join.
conds := make([]expression.Expression, 0, len(keys)+len(innerPlan.pushedDownConds))
eqConds = make([]expression.Expression, 0, len(keys))
// Construct a fake equal expression for calculating the range.
for _, key := range keys {
// Int datum 1 can convert to all column's type(numeric type, string type, json, time type, enum, set) safely.
fakeConstant := &expression.Constant{Value: types.NewIntDatum(1), RetType: key.GetType()}
eqFunc := expression.NewFunctionInternal(p.ctx, ast.EQ, types.NewFieldType(mysql.TypeTiny), key, fakeConstant)
conds = append(conds, eqFunc)
eqConds = append(eqConds, eqFunc)
}
conds = append(conds, innerPlan.pushedDownConds...)
return conds, eqConds, keyOff2IdxOff
}
// tryToGetIndexJoin will get index join by hints. If we can generate a valid index join by hint, the second return value
// will be true, which means we force to choose this index join. Otherwise we will select a join algorithm with min-cost.
func (p *LogicalJoin) tryToGetIndexJoin(prop *requiredProp) ([]PhysicalPlan, bool) {
if len(p.EqualConditions) == 0 {
return nil, false
}
plans := make([]PhysicalPlan, 0, 2)
leftOuter := (p.preferJoinType & preferLeftAsIndexOuter) > 0
rightOuter := (p.preferJoinType & preferRightAsIndexOuter) > 0
switch p.JoinType {
case SemiJoin, AntiSemiJoin, LeftOuterSemiJoin, AntiLeftOuterSemiJoin, LeftOuterJoin:
join := p.getIndexJoinByOuterIdx(prop, 0)
if join != nil {
// If the plan is not nil and matches the hint, return it directly.
if leftOuter {
return join, true
}
plans = append(plans, join...)
}
case RightOuterJoin:
join := p.getIndexJoinByOuterIdx(prop, 1)
if join != nil {
// If the plan is not nil and matches the hint, return it directly.
if rightOuter {
return join, true
}
plans = append(plans, join...)
}
case InnerJoin:
lhsCardinality := p.Children()[0].StatsInfo().Count()
rhsCardinality := p.Children()[1].StatsInfo().Count()
leftJoins := p.getIndexJoinByOuterIdx(prop, 0)
if leftOuter && leftJoins != nil {
return leftJoins, true
}
rightJoins := p.getIndexJoinByOuterIdx(prop, 1)
if rightOuter && rightJoins != nil {
return rightJoins, true
}
if leftJoins != nil && lhsCardinality < rhsCardinality {
return leftJoins, leftOuter
}
if rightJoins != nil && rhsCardinality < lhsCardinality {
return rightJoins, rightOuter
}
plans = append(plans, leftJoins...)
plans = append(plans, rightJoins...)
}
return plans, false
}
// LogicalJoin can generates hash join, index join and sort merge join.
// Firstly we check the hint, if hint is figured by user, we force to choose the corresponding physical plan.
// If the hint is not matched, it will get other candidates.
// If the hint is not figured, we will pick all candidates.
func (p *LogicalJoin) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
mergeJoins := p.getMergeJoin(prop)
if (p.preferJoinType&preferMergeJoin) > 0 && len(mergeJoins) > 0 {
return mergeJoins
}
joins := make([]PhysicalPlan, 0, 5)
joins = append(joins, mergeJoins...)
indexJoins, forced := p.tryToGetIndexJoin(prop)
if forced {
return indexJoins
}
joins = append(joins, indexJoins...)
hashJoins := p.getHashJoins(prop)
if (p.preferJoinType & preferHashJoin) > 0 {
return hashJoins
}
joins = append(joins, hashJoins...)
return joins
}
// tryToGetChildProp will check if this sort property can be pushed or not.
// When a sort column will be replaced by scalar function, we refuse it.
// When a sort column will be replaced by a constant, we just remove it.
func (p *LogicalProjection) tryToGetChildProp(prop *requiredProp) (*requiredProp, bool) {
newProp := &requiredProp{taskTp: rootTaskType, expectedCnt: prop.expectedCnt}
newCols := make([]*expression.Column, 0, len(prop.cols))
for _, col := range prop.cols {
idx := p.schema.ColumnIndex(col)
switch expr := p.Exprs[idx].(type) {
case *expression.Column:
newCols = append(newCols, expr)
case *expression.ScalarFunction:
return nil, false
}
}
newProp.cols = newCols
newProp.desc = prop.desc
return newProp, true
}
func (p *LogicalProjection) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
newProp, ok := p.tryToGetChildProp(prop)
if !ok {
return nil
}
proj := PhysicalProjection{
Exprs: p.Exprs,
CalculateNoDelay: p.calculateNoDelay,
AvoidColumnEvaluator: p.avoidColumnEvaluator,
}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt), newProp)
proj.SetSchema(p.schema)
return []PhysicalPlan{proj}
}
func (lt *LogicalTopN) getPhysTopN() []PhysicalPlan {
ret := make([]PhysicalPlan, 0, 3)
for _, tp := range wholeTaskTypes {
resultProp := &requiredProp{taskTp: tp, expectedCnt: math.MaxFloat64}
topN := PhysicalTopN{
ByItems: lt.ByItems,
Count: lt.Count,
Offset: lt.Offset,
}.init(lt.ctx, lt.stats, resultProp)
ret = append(ret, topN)
}
return ret
}
func (lt *LogicalTopN) getPhysLimits() []PhysicalPlan {
prop, canPass := getPropByOrderByItems(lt.ByItems)
if !canPass {
return nil
}
ret := make([]PhysicalPlan, 0, 3)
for _, tp := range wholeTaskTypes {
resultProp := &requiredProp{taskTp: tp, expectedCnt: float64(lt.Count + lt.Offset), cols: prop.cols, desc: prop.desc}
limit := PhysicalLimit{
Count: lt.Count,
Offset: lt.Offset,
}.init(lt.ctx, lt.stats, resultProp)
ret = append(ret, limit)
}
return ret
}
func (lt *LogicalTopN) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
if prop.matchItems(lt.ByItems) {
return append(lt.getPhysTopN(), lt.getPhysLimits()...)
}
return nil
}
func (la *LogicalApply) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
if !prop.allColsFromSchema(la.children[0].Schema()) { // for convenient, we don't pass through any prop
return nil
}
apply := PhysicalApply{
PhysicalJoin: la.getHashJoin(prop, 1),
OuterSchema: la.corCols,
rightChOffset: la.children[0].Schema().Len(),
}.init(la.ctx,
la.stats.scaleByExpectCnt(prop.expectedCnt),
&requiredProp{expectedCnt: math.MaxFloat64, cols: prop.cols, desc: prop.desc},
&requiredProp{expectedCnt: math.MaxFloat64})
apply.SetSchema(la.schema)
return []PhysicalPlan{apply}
}
// exhaustPhysicalPlans is only for implementing interface. DataSource and Dual generate task in `findBestTask` directly.
func (p *baseLogicalPlan) exhaustPhysicalPlans(_ *requiredProp) []PhysicalPlan {
panic("This function should not be called")
}
func (la *LogicalAggregation) getStreamAggs(prop *requiredProp) []PhysicalPlan {
if len(la.possibleProperties) == 0 {
return nil
}
for _, aggFunc := range la.AggFuncs {
if aggFunc.Mode == aggregation.FinalMode {
return nil
}
}
// group by a + b is not interested in any order.
if len(la.groupByCols) != len(la.GroupByItems) {
return nil
}
streamAggs := make([]PhysicalPlan, 0, len(la.possibleProperties)*2)
for _, cols := range la.possibleProperties {
_, keys := getPermutation(cols, la.groupByCols)
if len(keys) != len(la.groupByCols) {
continue
}
for _, tp := range wholeTaskTypes {
// Second read in the double can't meet the stream aggregation's require prop.
if tp == copDoubleReadTaskType {
continue
}
childProp := &requiredProp{
taskTp: tp,
cols: keys,
desc: prop.desc,
expectedCnt: prop.expectedCnt * la.inputCount / la.stats.count,
}
if childProp.expectedCnt < prop.expectedCnt {
childProp.expectedCnt = prop.expectedCnt
}
if !prop.isPrefix(childProp) {
continue
}
agg := basePhysicalAgg{
GroupByItems: la.GroupByItems,
AggFuncs: la.AggFuncs,
}.initForStream(la.ctx, la.stats.scaleByExpectCnt(prop.expectedCnt), childProp)
agg.SetSchema(la.schema.Clone())
streamAggs = append(streamAggs, agg)
}
}
return streamAggs
}
func (la *LogicalAggregation) getHashAggs(prop *requiredProp) []PhysicalPlan {
if !prop.isEmpty() {
return nil
}
hashAggs := make([]PhysicalPlan, 0, len(wholeTaskTypes))
for _, taskTp := range wholeTaskTypes {
agg := basePhysicalAgg{
GroupByItems: la.GroupByItems,
AggFuncs: la.AggFuncs,
}.initForHash(la.ctx, la.stats.scaleByExpectCnt(prop.expectedCnt), &requiredProp{expectedCnt: math.MaxFloat64, taskTp: taskTp})
agg.SetSchema(la.schema.Clone())
hashAggs = append(hashAggs, agg)
}
return hashAggs
}
func (la *LogicalAggregation) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
aggs := make([]PhysicalPlan, 0, len(la.possibleProperties)+1)
aggs = append(aggs, la.getHashAggs(prop)...)
streamAggs := la.getStreamAggs(prop)
aggs = append(aggs, streamAggs...)
return aggs
}
func (p *LogicalSelection) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
sel := PhysicalSelection{
Conditions: p.Conditions,
}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt), prop)
return []PhysicalPlan{sel}
}
func (p *LogicalLimit) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
if !prop.isEmpty() {
return nil
}
ret := make([]PhysicalPlan, 0, len(wholeTaskTypes))
for _, tp := range wholeTaskTypes {
resultProp := &requiredProp{taskTp: tp, expectedCnt: float64(p.Count + p.Offset)}
limit := PhysicalLimit{
Offset: p.Offset,
Count: p.Count,
}.init(p.ctx, p.stats, resultProp)
ret = append(ret, limit)
}
return ret
}
func (p *LogicalLock) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
lock := PhysicalLock{
Lock: p.Lock,
}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt), prop)
return []PhysicalPlan{lock}
}
func (p *LogicalUnionAll) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
// TODO: UnionAll can not pass any order, but we can change it to sort merge to keep order.
if !prop.isEmpty() {
return nil
}
chReqProps := make([]*requiredProp, 0, len(p.children))
for range p.children {
chReqProps = append(chReqProps, &requiredProp{expectedCnt: prop.expectedCnt})
}
ua := PhysicalUnionAll{}.init(p.ctx, p.stats.scaleByExpectCnt(prop.expectedCnt), chReqProps...)
return []PhysicalPlan{ua}
}
func (ls *LogicalSort) getPhysicalSort(prop *requiredProp) *PhysicalSort {
ps := PhysicalSort{ByItems: ls.ByItems}.init(ls.ctx, ls.stats.scaleByExpectCnt(prop.expectedCnt), &requiredProp{expectedCnt: math.MaxFloat64})
return ps
}
func (ls *LogicalSort) getNominalSort(reqProp *requiredProp) *NominalSort {
prop, canPass := getPropByOrderByItems(ls.ByItems)
if !canPass {
return nil
}
prop.expectedCnt = reqProp.expectedCnt
ps := NominalSort{}.init(ls.ctx, prop)
return ps
}
func (ls *LogicalSort) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
if prop.matchItems(ls.ByItems) {
ret := make([]PhysicalPlan, 0, 2)
ret = append(ret, ls.getPhysicalSort(prop))
ns := ls.getNominalSort(prop)
if ns != nil {
ret = append(ret, ns)
}
return ret
}
return nil
}
func (p *LogicalExists) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
if !prop.isEmpty() {
return nil
}
exists := PhysicalExists{}.init(p.ctx, p.stats, &requiredProp{expectedCnt: 1})
exists.SetSchema(p.schema)
return []PhysicalPlan{exists}
}
func (p *LogicalMaxOneRow) exhaustPhysicalPlans(prop *requiredProp) []PhysicalPlan {
if !prop.isEmpty() {
return nil
}
mor := PhysicalMaxOneRow{}.init(p.ctx, p.stats, &requiredProp{expectedCnt: 2})
return []PhysicalPlan{mor}
}