-
Notifications
You must be signed in to change notification settings - Fork 5.9k
/
eliminate_projection.go
204 lines (183 loc) · 5.87 KB
/
eliminate_projection.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"github.com/pingcap/tidb/expression"
)
// canProjectionBeEliminatedLoose checks whether a projection can be eliminated, returns true if
// every expression is a single column.
func canProjectionBeEliminatedLoose(p *LogicalProjection) bool {
for _, expr := range p.Exprs {
_, ok := expr.(*expression.Column)
if !ok {
return false
}
}
return true
}
// canProjectionBeEliminatedStrict checks whether a projection can be eliminated, returns true if
// the projection just copy its child's output.
func canProjectionBeEliminatedStrict(p *PhysicalProjection) bool {
if p.Schema().Len() == 0 {
return true
}
child := p.Children()[0]
if p.Schema().Len() != child.Schema().Len() {
return false
}
for i, expr := range p.Exprs {
col, ok := expr.(*expression.Column)
if !ok || !col.Equal(nil, child.Schema().Columns[i]) {
return false
}
}
return true
}
func resolveColumnAndReplace(origin *expression.Column, replace map[string]*expression.Column) {
dst := replace[string(origin.HashCode(nil))]
if dst != nil {
colName := origin.ColName
*origin = *dst
origin.ColName = colName
}
}
func resolveExprAndReplace(origin expression.Expression, replace map[string]*expression.Column) {
switch expr := origin.(type) {
case *expression.Column:
resolveColumnAndReplace(expr, replace)
case *expression.CorrelatedColumn:
resolveColumnAndReplace(&expr.Column, replace)
case *expression.ScalarFunction:
for _, arg := range expr.GetArgs() {
resolveExprAndReplace(arg, replace)
}
}
}
func doPhysicalProjectionElimination(p PhysicalPlan) PhysicalPlan {
for i, child := range p.Children() {
p.Children()[i] = doPhysicalProjectionElimination(child)
}
proj, isProj := p.(*PhysicalProjection)
if !isProj || !canProjectionBeEliminatedStrict(proj) {
return p
}
child := p.Children()[0]
return child
}
// eliminatePhysicalProjection should be called after physical optimization to eliminate the redundant projection
// left after logical projection elimination.
func eliminatePhysicalProjection(p PhysicalPlan) PhysicalPlan {
oldSchema := p.Schema()
newRoot := doPhysicalProjectionElimination(p)
newCols := newRoot.Schema().Columns
for i, oldCol := range oldSchema.Columns {
newCols[i].DBName = oldCol.DBName
newCols[i].TblName = oldCol.TblName
newCols[i].ColName = oldCol.ColName
newCols[i].OrigTblName = oldCol.OrigTblName
}
return newRoot
}
type projectionEliminater struct {
}
// optimize implements the logicalOptRule interface.
func (pe *projectionEliminater) optimize(lp LogicalPlan) (LogicalPlan, error) {
root := pe.eliminate(lp, make(map[string]*expression.Column), false)
return root, nil
}
// eliminate eliminates the redundant projection in a logical plan.
func (pe *projectionEliminater) eliminate(p LogicalPlan, replace map[string]*expression.Column, canEliminate bool) LogicalPlan {
proj, isProj := p.(*LogicalProjection)
childFlag := canEliminate
if _, isUnion := p.(*LogicalUnionAll); isUnion {
childFlag = false
} else if _, isAgg := p.(*LogicalAggregation); isAgg || isProj {
childFlag = true
}
for i, child := range p.Children() {
p.Children()[i] = pe.eliminate(child, replace, childFlag)
}
switch x := p.(type) {
case *LogicalJoin:
x.schema = buildLogicalJoinSchema(x.JoinType, x)
case *LogicalApply:
x.schema = buildLogicalJoinSchema(x.JoinType, x)
default:
for _, dst := range p.Schema().Columns {
resolveColumnAndReplace(dst, replace)
}
}
p.replaceExprColumns(replace)
if !(isProj && canEliminate && canProjectionBeEliminatedLoose(proj)) {
return p
}
exprs := proj.Exprs
for i, col := range proj.Schema().Columns {
replace[string(col.HashCode(nil))] = exprs[i].(*expression.Column)
}
return p.Children()[0]
}
func (p *LogicalJoin) replaceExprColumns(replace map[string]*expression.Column) {
for _, equalExpr := range p.EqualConditions {
resolveExprAndReplace(equalExpr, replace)
}
for _, leftExpr := range p.LeftConditions {
resolveExprAndReplace(leftExpr, replace)
}
for _, rightExpr := range p.RightConditions {
resolveExprAndReplace(rightExpr, replace)
}
for _, otherExpr := range p.OtherConditions {
resolveExprAndReplace(otherExpr, replace)
}
}
func (p *LogicalProjection) replaceExprColumns(replace map[string]*expression.Column) {
for _, expr := range p.Exprs {
resolveExprAndReplace(expr, replace)
}
}
func (la *LogicalAggregation) replaceExprColumns(replace map[string]*expression.Column) {
for _, agg := range la.AggFuncs {
for _, aggExpr := range agg.Args {
resolveExprAndReplace(aggExpr, replace)
}
}
for _, gbyItem := range la.GroupByItems {
resolveExprAndReplace(gbyItem, replace)
}
la.collectGroupByColumns()
}
func (p *LogicalSelection) replaceExprColumns(replace map[string]*expression.Column) {
for _, expr := range p.Conditions {
resolveExprAndReplace(expr, replace)
}
}
func (la *LogicalApply) replaceExprColumns(replace map[string]*expression.Column) {
la.LogicalJoin.replaceExprColumns(replace)
for _, coCol := range la.corCols {
dst := replace[string(coCol.Column.HashCode(nil))]
if dst != nil {
coCol.Column = *dst
}
}
}
func (ls *LogicalSort) replaceExprColumns(replace map[string]*expression.Column) {
for _, byItem := range ls.ByItems {
resolveExprAndReplace(byItem.Expr, replace)
}
}
func (lt *LogicalTopN) replaceExprColumns(replace map[string]*expression.Column) {
for _, byItem := range lt.ByItems {
resolveExprAndReplace(byItem.Expr, replace)
}
}