-
Notifications
You must be signed in to change notification settings - Fork 740
/
lib.rs
1965 lines (1775 loc) · 64.1 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Substrate Primitives: IO
//!
//! This crate contains interfaces for the runtime to communicate with the outside world, ergo `io`.
//! In other context, such interfaces are referred to as "**host functions**".
//!
//! Each set of host functions are defined with an instance of the
//! [`sp_runtime_interface::runtime_interface`] macro.
//!
//! Most notably, this crate contains host functions for:
//!
//! - [`hashing`]
//! - [`crypto`]
//! - [`trie`]
//! - [`offchain`]
//! - [`storage`]
//! - [`allocator`]
//! - [`logging`]
//!
//! All of the default host functions provided by this crate, and by default contained in all
//! substrate-based clients are amalgamated in [`SubstrateHostFunctions`].
//!
//! ## Externalities
//!
//! Host functions go hand in hand with the concept of externalities. Externalities are an
//! environment in which host functions are provided, and thus can be accessed. Some host functions
//! are only accessible in an externality environment that provides it.
//!
//! A typical error for substrate developers is the following:
//!
//! ```should_panic
//! use sp_io::storage::get;
//! # fn main() {
//! let data = get(b"hello world");
//! # }
//! ```
//!
//! This code will panic with the following error:
//!
//! ```no_compile
//! thread 'main' panicked at '`get_version_1` called outside of an Externalities-provided environment.'
//! ```
//!
//! Such error messages should always be interpreted as "code accessing host functions accessed
//! outside of externalities".
//!
//! An externality is any type that implements [`sp_externalities::Externalities`]. A simple example
//! of which is [`TestExternalities`], which is commonly used in tests and is exported from this
//! crate.
//!
//! ```
//! use sp_io::{storage::get, TestExternalities};
//! # fn main() {
//! TestExternalities::default().execute_with(|| {
//! let data = get(b"hello world");
//! });
//! # }
//! ```
#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(enable_alloc_error_handler, feature(alloc_error_handler))]
extern crate alloc;
use alloc::vec::Vec;
#[cfg(feature = "std")]
use tracing;
#[cfg(feature = "std")]
use sp_core::{
crypto::Pair,
hexdisplay::HexDisplay,
offchain::{OffchainDbExt, OffchainWorkerExt, TransactionPoolExt},
storage::ChildInfo,
};
#[cfg(feature = "std")]
use sp_keystore::KeystoreExt;
#[cfg(feature = "bandersnatch-experimental")]
use sp_core::bandersnatch;
use sp_core::{
crypto::KeyTypeId,
ecdsa, ed25519,
offchain::{
HttpError, HttpRequestId, HttpRequestStatus, OpaqueNetworkState, StorageKind, Timestamp,
},
sr25519,
storage::StateVersion,
LogLevel, LogLevelFilter, OpaquePeerId, H256,
};
#[cfg(feature = "bls-experimental")]
use sp_core::{bls381, ecdsa_bls381};
#[cfg(feature = "std")]
use sp_trie::{LayoutV0, LayoutV1, TrieConfiguration};
use sp_runtime_interface::{
pass_by::{PassBy, PassByCodec},
runtime_interface, Pointer,
};
use codec::{Decode, Encode};
#[cfg(feature = "std")]
use secp256k1::{
ecdsa::{RecoverableSignature, RecoveryId},
Message, SECP256K1,
};
#[cfg(feature = "std")]
use sp_externalities::{Externalities, ExternalitiesExt};
pub use sp_externalities::MultiRemovalResults;
#[cfg(all(not(feature = "disable_allocator"), substrate_runtime, target_family = "wasm"))]
mod global_alloc_wasm;
#[cfg(all(
not(feature = "disable_allocator"),
substrate_runtime,
any(target_arch = "riscv32", target_arch = "riscv64")
))]
mod global_alloc_riscv;
#[cfg(feature = "std")]
const LOG_TARGET: &str = "runtime::io";
/// Error verifying ECDSA signature
#[derive(Encode, Decode)]
pub enum EcdsaVerifyError {
/// Incorrect value of R or S
BadRS,
/// Incorrect value of V
BadV,
/// Invalid signature
BadSignature,
}
/// The outcome of calling `storage_kill`. Returned value is the number of storage items
/// removed from the backend from making the `storage_kill` call.
#[derive(PassByCodec, Encode, Decode)]
pub enum KillStorageResult {
/// All keys to remove were removed, return number of iterations performed during the
/// operation.
AllRemoved(u32),
/// Not all key to remove were removed, return number of iterations performed during the
/// operation.
SomeRemaining(u32),
}
impl From<MultiRemovalResults> for KillStorageResult {
fn from(r: MultiRemovalResults) -> Self {
// We use `loops` here rather than `backend` because that's the same as the original
// functionality pre-#11490. This won't matter once we switch to the new host function
// since we won't be using the `KillStorageResult` type in the runtime any more.
match r.maybe_cursor {
None => Self::AllRemoved(r.loops),
Some(..) => Self::SomeRemaining(r.loops),
}
}
}
/// Interface for accessing the storage from within the runtime.
#[runtime_interface]
pub trait Storage {
/// Returns the data for `key` in the storage or `None` if the key can not be found.
fn get(&mut self, key: &[u8]) -> Option<bytes::Bytes> {
self.storage(key).map(bytes::Bytes::from)
}
/// Get `key` from storage, placing the value into `value_out` and return the number of
/// bytes that the entry in storage has beyond the offset or `None` if the storage entry
/// doesn't exist at all.
/// If `value_out` length is smaller than the returned length, only `value_out` length bytes
/// are copied into `value_out`.
fn read(&mut self, key: &[u8], value_out: &mut [u8], value_offset: u32) -> Option<u32> {
self.storage(key).map(|value| {
let value_offset = value_offset as usize;
let data = &value[value_offset.min(value.len())..];
let written = std::cmp::min(data.len(), value_out.len());
value_out[..written].copy_from_slice(&data[..written]);
data.len() as u32
})
}
/// Set `key` to `value` in the storage.
fn set(&mut self, key: &[u8], value: &[u8]) {
self.set_storage(key.to_vec(), value.to_vec());
}
/// Clear the storage of the given `key` and its value.
fn clear(&mut self, key: &[u8]) {
self.clear_storage(key)
}
/// Check whether the given `key` exists in storage.
fn exists(&mut self, key: &[u8]) -> bool {
self.exists_storage(key)
}
/// Clear the storage of each key-value pair where the key starts with the given `prefix`.
fn clear_prefix(&mut self, prefix: &[u8]) {
let _ = Externalities::clear_prefix(*self, prefix, None, None);
}
/// Clear the storage of each key-value pair where the key starts with the given `prefix`.
///
/// # Limit
///
/// Deletes all keys from the overlay and up to `limit` keys from the backend if
/// it is set to `Some`. No limit is applied when `limit` is set to `None`.
///
/// The limit can be used to partially delete a prefix storage in case it is too large
/// to delete in one go (block).
///
/// Returns [`KillStorageResult`] to inform about the result.
///
/// # Note
///
/// Please note that keys that are residing in the overlay for that prefix when
/// issuing this call are all deleted without counting towards the `limit`. Only keys
/// written during the current block are part of the overlay. Deleting with a `limit`
/// mostly makes sense with an empty overlay for that prefix.
///
/// Calling this function multiple times per block for the same `prefix` does
/// not make much sense because it is not cumulative when called inside the same block.
/// The deletion would always start from `prefix` resulting in the same keys being deleted
/// every time this function is called with the exact same arguments per block. This happens
/// because the keys in the overlay are not taken into account when deleting keys in the
/// backend.
#[version(2)]
fn clear_prefix(&mut self, prefix: &[u8], limit: Option<u32>) -> KillStorageResult {
Externalities::clear_prefix(*self, prefix, limit, None).into()
}
/// Partially clear the storage of each key-value pair where the key starts with the given
/// prefix.
///
/// # Limit
///
/// A *limit* should always be provided through `maybe_limit`. This is one fewer than the
/// maximum number of backend iterations which may be done by this operation and as such
/// represents the maximum number of backend deletions which may happen. A *limit* of zero
/// implies that no keys will be deleted, though there may be a single iteration done.
///
/// The limit can be used to partially delete a prefix storage in case it is too large or costly
/// to delete in a single operation.
///
/// # Cursor
///
/// A *cursor* may be passed in to this operation with `maybe_cursor`. `None` should only be
/// passed once (in the initial call) for any given `maybe_prefix` value. Subsequent calls
/// operating on the same prefix should always pass `Some`, and this should be equal to the
/// previous call result's `maybe_cursor` field.
///
/// Returns [`MultiRemovalResults`](sp_io::MultiRemovalResults) to inform about the result. Once
/// the resultant `maybe_cursor` field is `None`, then no further items remain to be deleted.
///
/// NOTE: After the initial call for any given prefix, it is important that no keys further
/// keys under the same prefix are inserted. If so, then they may or may not be deleted by
/// subsequent calls.
///
/// # Note
///
/// Please note that keys which are residing in the overlay for that prefix when
/// issuing this call are deleted without counting towards the `limit`.
#[version(3, register_only)]
fn clear_prefix(
&mut self,
maybe_prefix: &[u8],
maybe_limit: Option<u32>,
maybe_cursor: Option<Vec<u8>>, //< TODO Make work or just Option<Vec<u8>>?
) -> MultiRemovalResults {
Externalities::clear_prefix(
*self,
maybe_prefix,
maybe_limit,
maybe_cursor.as_ref().map(|x| &x[..]),
)
.into()
}
/// Append the encoded `value` to the storage item at `key`.
///
/// The storage item needs to implement [`EncodeAppend`](codec::EncodeAppend).
///
/// # Warning
///
/// If the storage item does not support [`EncodeAppend`](codec::EncodeAppend) or
/// something else fails at appending, the storage item will be set to `[value]`.
fn append(&mut self, key: &[u8], value: Vec<u8>) {
self.storage_append(key.to_vec(), value);
}
/// "Commit" all existing operations and compute the resulting storage root.
///
/// The hashing algorithm is defined by the `Block`.
///
/// Returns a `Vec<u8>` that holds the SCALE encoded hash.
fn root(&mut self) -> Vec<u8> {
self.storage_root(StateVersion::V0)
}
/// "Commit" all existing operations and compute the resulting storage root.
///
/// The hashing algorithm is defined by the `Block`.
///
/// Returns a `Vec<u8>` that holds the SCALE encoded hash.
#[version(2)]
fn root(&mut self, version: StateVersion) -> Vec<u8> {
self.storage_root(version)
}
/// Always returns `None`. This function exists for compatibility reasons.
fn changes_root(&mut self, _parent_hash: &[u8]) -> Option<Vec<u8>> {
None
}
/// Get the next key in storage after the given one in lexicographic order.
fn next_key(&mut self, key: &[u8]) -> Option<Vec<u8>> {
self.next_storage_key(key)
}
/// Start a new nested transaction.
///
/// This allows to either commit or roll back all changes that are made after this call.
/// For every transaction there must be a matching call to either `rollback_transaction`
/// or `commit_transaction`. This is also effective for all values manipulated using the
/// `DefaultChildStorage` API.
///
/// # Warning
///
/// This is a low level API that is potentially dangerous as it can easily result
/// in unbalanced transactions. For example, FRAME users should use high level storage
/// abstractions.
fn start_transaction(&mut self) {
self.storage_start_transaction();
}
/// Rollback the last transaction started by `start_transaction`.
///
/// Any changes made during that transaction are discarded.
///
/// # Panics
///
/// Will panic if there is no open transaction.
fn rollback_transaction(&mut self) {
self.storage_rollback_transaction()
.expect("No open transaction that can be rolled back.");
}
/// Commit the last transaction started by `start_transaction`.
///
/// Any changes made during that transaction are committed.
///
/// # Panics
///
/// Will panic if there is no open transaction.
fn commit_transaction(&mut self) {
self.storage_commit_transaction()
.expect("No open transaction that can be committed.");
}
}
/// Interface for accessing the child storage for default child trie,
/// from within the runtime.
#[runtime_interface]
pub trait DefaultChildStorage {
/// Get a default child storage value for a given key.
///
/// Parameter `storage_key` is the unprefixed location of the root of the child trie in the
/// parent trie. Result is `None` if the value for `key` in the child storage can not be found.
fn get(&mut self, storage_key: &[u8], key: &[u8]) -> Option<Vec<u8>> {
let child_info = ChildInfo::new_default(storage_key);
self.child_storage(&child_info, key).map(|s| s.to_vec())
}
/// Allocation efficient variant of `get`.
///
/// Get `key` from child storage, placing the value into `value_out` and return the number
/// of bytes that the entry in storage has beyond the offset or `None` if the storage entry
/// doesn't exist at all.
/// If `value_out` length is smaller than the returned length, only `value_out` length bytes
/// are copied into `value_out`.
fn read(
&mut self,
storage_key: &[u8],
key: &[u8],
value_out: &mut [u8],
value_offset: u32,
) -> Option<u32> {
let child_info = ChildInfo::new_default(storage_key);
self.child_storage(&child_info, key).map(|value| {
let value_offset = value_offset as usize;
let data = &value[value_offset.min(value.len())..];
let written = std::cmp::min(data.len(), value_out.len());
value_out[..written].copy_from_slice(&data[..written]);
data.len() as u32
})
}
/// Set a child storage value.
///
/// Set `key` to `value` in the child storage denoted by `storage_key`.
fn set(&mut self, storage_key: &[u8], key: &[u8], value: &[u8]) {
let child_info = ChildInfo::new_default(storage_key);
self.set_child_storage(&child_info, key.to_vec(), value.to_vec());
}
/// Clear a child storage key.
///
/// For the default child storage at `storage_key`, clear value at `key`.
fn clear(&mut self, storage_key: &[u8], key: &[u8]) {
let child_info = ChildInfo::new_default(storage_key);
self.clear_child_storage(&child_info, key);
}
/// Clear an entire child storage.
///
/// If it exists, the child storage for `storage_key`
/// is removed.
fn storage_kill(&mut self, storage_key: &[u8]) {
let child_info = ChildInfo::new_default(storage_key);
let _ = self.kill_child_storage(&child_info, None, None);
}
/// Clear a child storage key.
///
/// See `Storage` module `clear_prefix` documentation for `limit` usage.
#[version(2)]
fn storage_kill(&mut self, storage_key: &[u8], limit: Option<u32>) -> bool {
let child_info = ChildInfo::new_default(storage_key);
let r = self.kill_child_storage(&child_info, limit, None);
r.maybe_cursor.is_none()
}
/// Clear a child storage key.
///
/// See `Storage` module `clear_prefix` documentation for `limit` usage.
#[version(3)]
fn storage_kill(&mut self, storage_key: &[u8], limit: Option<u32>) -> KillStorageResult {
let child_info = ChildInfo::new_default(storage_key);
self.kill_child_storage(&child_info, limit, None).into()
}
/// Clear a child storage key.
///
/// See `Storage` module `clear_prefix` documentation for `limit` usage.
#[version(4, register_only)]
fn storage_kill(
&mut self,
storage_key: &[u8],
maybe_limit: Option<u32>,
maybe_cursor: Option<Vec<u8>>,
) -> MultiRemovalResults {
let child_info = ChildInfo::new_default(storage_key);
self.kill_child_storage(&child_info, maybe_limit, maybe_cursor.as_ref().map(|x| &x[..]))
.into()
}
/// Check a child storage key.
///
/// Check whether the given `key` exists in default child defined at `storage_key`.
fn exists(&mut self, storage_key: &[u8], key: &[u8]) -> bool {
let child_info = ChildInfo::new_default(storage_key);
self.exists_child_storage(&child_info, key)
}
/// Clear child default key by prefix.
///
/// Clear the child storage of each key-value pair where the key starts with the given `prefix`.
fn clear_prefix(&mut self, storage_key: &[u8], prefix: &[u8]) {
let child_info = ChildInfo::new_default(storage_key);
let _ = self.clear_child_prefix(&child_info, prefix, None, None);
}
/// Clear the child storage of each key-value pair where the key starts with the given `prefix`.
///
/// See `Storage` module `clear_prefix` documentation for `limit` usage.
#[version(2)]
fn clear_prefix(
&mut self,
storage_key: &[u8],
prefix: &[u8],
limit: Option<u32>,
) -> KillStorageResult {
let child_info = ChildInfo::new_default(storage_key);
self.clear_child_prefix(&child_info, prefix, limit, None).into()
}
/// Clear the child storage of each key-value pair where the key starts with the given `prefix`.
///
/// See `Storage` module `clear_prefix` documentation for `limit` usage.
#[version(3, register_only)]
fn clear_prefix(
&mut self,
storage_key: &[u8],
prefix: &[u8],
maybe_limit: Option<u32>,
maybe_cursor: Option<Vec<u8>>,
) -> MultiRemovalResults {
let child_info = ChildInfo::new_default(storage_key);
self.clear_child_prefix(
&child_info,
prefix,
maybe_limit,
maybe_cursor.as_ref().map(|x| &x[..]),
)
.into()
}
/// Default child root calculation.
///
/// "Commit" all existing operations and compute the resulting child storage root.
/// The hashing algorithm is defined by the `Block`.
///
/// Returns a `Vec<u8>` that holds the SCALE encoded hash.
fn root(&mut self, storage_key: &[u8]) -> Vec<u8> {
let child_info = ChildInfo::new_default(storage_key);
self.child_storage_root(&child_info, StateVersion::V0)
}
/// Default child root calculation.
///
/// "Commit" all existing operations and compute the resulting child storage root.
/// The hashing algorithm is defined by the `Block`.
///
/// Returns a `Vec<u8>` that holds the SCALE encoded hash.
#[version(2)]
fn root(&mut self, storage_key: &[u8], version: StateVersion) -> Vec<u8> {
let child_info = ChildInfo::new_default(storage_key);
self.child_storage_root(&child_info, version)
}
/// Child storage key iteration.
///
/// Get the next key in storage after the given one in lexicographic order in child storage.
fn next_key(&mut self, storage_key: &[u8], key: &[u8]) -> Option<Vec<u8>> {
let child_info = ChildInfo::new_default(storage_key);
self.next_child_storage_key(&child_info, key)
}
}
/// Interface that provides trie related functionality.
#[runtime_interface]
pub trait Trie {
/// A trie root formed from the iterated items.
fn blake2_256_root(input: Vec<(Vec<u8>, Vec<u8>)>) -> H256 {
LayoutV0::<sp_core::Blake2Hasher>::trie_root(input)
}
/// A trie root formed from the iterated items.
#[version(2)]
fn blake2_256_root(input: Vec<(Vec<u8>, Vec<u8>)>, version: StateVersion) -> H256 {
match version {
StateVersion::V0 => LayoutV0::<sp_core::Blake2Hasher>::trie_root(input),
StateVersion::V1 => LayoutV1::<sp_core::Blake2Hasher>::trie_root(input),
}
}
/// A trie root formed from the enumerated items.
fn blake2_256_ordered_root(input: Vec<Vec<u8>>) -> H256 {
LayoutV0::<sp_core::Blake2Hasher>::ordered_trie_root(input)
}
/// A trie root formed from the enumerated items.
#[version(2)]
fn blake2_256_ordered_root(input: Vec<Vec<u8>>, version: StateVersion) -> H256 {
match version {
StateVersion::V0 => LayoutV0::<sp_core::Blake2Hasher>::ordered_trie_root(input),
StateVersion::V1 => LayoutV1::<sp_core::Blake2Hasher>::ordered_trie_root(input),
}
}
/// A trie root formed from the iterated items.
fn keccak_256_root(input: Vec<(Vec<u8>, Vec<u8>)>) -> H256 {
LayoutV0::<sp_core::KeccakHasher>::trie_root(input)
}
/// A trie root formed from the iterated items.
#[version(2)]
fn keccak_256_root(input: Vec<(Vec<u8>, Vec<u8>)>, version: StateVersion) -> H256 {
match version {
StateVersion::V0 => LayoutV0::<sp_core::KeccakHasher>::trie_root(input),
StateVersion::V1 => LayoutV1::<sp_core::KeccakHasher>::trie_root(input),
}
}
/// A trie root formed from the enumerated items.
fn keccak_256_ordered_root(input: Vec<Vec<u8>>) -> H256 {
LayoutV0::<sp_core::KeccakHasher>::ordered_trie_root(input)
}
/// A trie root formed from the enumerated items.
#[version(2)]
fn keccak_256_ordered_root(input: Vec<Vec<u8>>, version: StateVersion) -> H256 {
match version {
StateVersion::V0 => LayoutV0::<sp_core::KeccakHasher>::ordered_trie_root(input),
StateVersion::V1 => LayoutV1::<sp_core::KeccakHasher>::ordered_trie_root(input),
}
}
/// Verify trie proof
fn blake2_256_verify_proof(root: H256, proof: &[Vec<u8>], key: &[u8], value: &[u8]) -> bool {
sp_trie::verify_trie_proof::<LayoutV0<sp_core::Blake2Hasher>, _, _, _>(
&root,
proof,
&[(key, Some(value))],
)
.is_ok()
}
/// Verify trie proof
#[version(2)]
fn blake2_256_verify_proof(
root: H256,
proof: &[Vec<u8>],
key: &[u8],
value: &[u8],
version: StateVersion,
) -> bool {
match version {
StateVersion::V0 => sp_trie::verify_trie_proof::<
LayoutV0<sp_core::Blake2Hasher>,
_,
_,
_,
>(&root, proof, &[(key, Some(value))])
.is_ok(),
StateVersion::V1 => sp_trie::verify_trie_proof::<
LayoutV1<sp_core::Blake2Hasher>,
_,
_,
_,
>(&root, proof, &[(key, Some(value))])
.is_ok(),
}
}
/// Verify trie proof
fn keccak_256_verify_proof(root: H256, proof: &[Vec<u8>], key: &[u8], value: &[u8]) -> bool {
sp_trie::verify_trie_proof::<LayoutV0<sp_core::KeccakHasher>, _, _, _>(
&root,
proof,
&[(key, Some(value))],
)
.is_ok()
}
/// Verify trie proof
#[version(2)]
fn keccak_256_verify_proof(
root: H256,
proof: &[Vec<u8>],
key: &[u8],
value: &[u8],
version: StateVersion,
) -> bool {
match version {
StateVersion::V0 => sp_trie::verify_trie_proof::<
LayoutV0<sp_core::KeccakHasher>,
_,
_,
_,
>(&root, proof, &[(key, Some(value))])
.is_ok(),
StateVersion::V1 => sp_trie::verify_trie_proof::<
LayoutV1<sp_core::KeccakHasher>,
_,
_,
_,
>(&root, proof, &[(key, Some(value))])
.is_ok(),
}
}
}
/// Interface that provides miscellaneous functions for communicating between the runtime and the
/// node.
#[runtime_interface]
pub trait Misc {
// NOTE: We use the target 'runtime' for messages produced by general printing functions,
// instead of LOG_TARGET.
/// Print a number.
fn print_num(val: u64) {
log::debug!(target: "runtime", "{}", val);
}
/// Print any valid `utf8` buffer.
fn print_utf8(utf8: &[u8]) {
if let Ok(data) = std::str::from_utf8(utf8) {
log::debug!(target: "runtime", "{}", data)
}
}
/// Print any `u8` slice as hex.
fn print_hex(data: &[u8]) {
log::debug!(target: "runtime", "{}", HexDisplay::from(&data));
}
/// Extract the runtime version of the given wasm blob by calling `Core_version`.
///
/// Returns `None` if calling the function failed for any reason or `Some(Vec<u8>)` where
/// the `Vec<u8>` holds the SCALE encoded runtime version.
///
/// # Performance
///
/// This function may be very expensive to call depending on the wasm binary. It may be
/// relatively cheap if the wasm binary contains version information. In that case,
/// uncompression of the wasm blob is the dominating factor.
///
/// If the wasm binary does not have the version information attached, then a legacy mechanism
/// may be involved. This means that a runtime call will be performed to query the version.
///
/// Calling into the runtime may be incredible expensive and should be approached with care.
fn runtime_version(&mut self, wasm: &[u8]) -> Option<Vec<u8>> {
use sp_core::traits::ReadRuntimeVersionExt;
let mut ext = sp_state_machine::BasicExternalities::default();
match self
.extension::<ReadRuntimeVersionExt>()
.expect("No `ReadRuntimeVersionExt` associated for the current context!")
.read_runtime_version(wasm, &mut ext)
{
Ok(v) => Some(v),
Err(err) => {
log::debug!(
target: LOG_TARGET,
"cannot read version from the given runtime: {}",
err,
);
None
},
}
}
}
#[cfg(feature = "std")]
sp_externalities::decl_extension! {
/// Extension to signal to [`crypt::ed25519_verify`] to use the dalek crate.
///
/// The switch from `ed25519-dalek` to `ed25519-zebra` was a breaking change.
/// `ed25519-zebra` is more permissive when it comes to the verification of signatures.
/// This means that some chains may fail to sync from genesis when using `ed25519-zebra`.
/// So, this extension can be registered to the runtime execution environment to signal
/// that `ed25519-dalek` should be used for verification. The extension can be registered
/// in the following way:
///
/// ```nocompile
/// client.execution_extensions().set_extensions_factory(
/// // Let the `UseDalekExt` extension being registered for each runtime invocation
/// // until the execution happens in the context of block `1000`.
/// sc_client_api::execution_extensions::ExtensionBeforeBlock::<Block, UseDalekExt>::new(1000)
/// );
/// ```
pub struct UseDalekExt;
}
#[cfg(feature = "std")]
impl Default for UseDalekExt {
fn default() -> Self {
Self
}
}
/// Interfaces for working with crypto related types from within the runtime.
#[runtime_interface]
pub trait Crypto {
/// Returns all `ed25519` public keys for the given key id from the keystore.
fn ed25519_public_keys(&mut self, id: KeyTypeId) -> Vec<ed25519::Public> {
self.extension::<KeystoreExt>()
.expect("No `keystore` associated for the current context!")
.ed25519_public_keys(id)
}
/// Generate an `ed22519` key for the given key type using an optional `seed` and
/// store it in the keystore.
///
/// The `seed` needs to be a valid utf8.
///
/// Returns the public key.
fn ed25519_generate(&mut self, id: KeyTypeId, seed: Option<Vec<u8>>) -> ed25519::Public {
let seed = seed.as_ref().map(|s| std::str::from_utf8(s).expect("Seed is valid utf8!"));
self.extension::<KeystoreExt>()
.expect("No `keystore` associated for the current context!")
.ed25519_generate_new(id, seed)
.expect("`ed25519_generate` failed")
}
/// Sign the given `msg` with the `ed25519` key that corresponds to the given public key and
/// key type in the keystore.
///
/// Returns the signature.
fn ed25519_sign(
&mut self,
id: KeyTypeId,
pub_key: &ed25519::Public,
msg: &[u8],
) -> Option<ed25519::Signature> {
self.extension::<KeystoreExt>()
.expect("No `keystore` associated for the current context!")
.ed25519_sign(id, pub_key, msg)
.ok()
.flatten()
}
/// Verify `ed25519` signature.
///
/// Returns `true` when the verification was successful.
fn ed25519_verify(sig: &ed25519::Signature, msg: &[u8], pub_key: &ed25519::Public) -> bool {
// We don't want to force everyone needing to call the function in an externalities context.
// So, we assume that we should not use dalek when we are not in externalities context.
// Otherwise, we check if the extension is present.
if sp_externalities::with_externalities(|mut e| e.extension::<UseDalekExt>().is_some())
.unwrap_or_default()
{
use ed25519_dalek::Verifier;
let Ok(public_key) = ed25519_dalek::VerifyingKey::from_bytes(&pub_key.0) else {
return false
};
let sig = ed25519_dalek::Signature::from_bytes(&sig.0);
public_key.verify(msg, &sig).is_ok()
} else {
ed25519::Pair::verify(sig, msg, pub_key)
}
}
/// Register a `ed25519` signature for batch verification.
///
/// Batch verification must be enabled by calling [`start_batch_verify`].
/// If batch verification is not enabled, the signature will be verified immediately.
/// To get the result of the batch verification, [`finish_batch_verify`]
/// needs to be called.
///
/// Returns `true` when the verification is either successful or batched.
///
/// NOTE: Is tagged with `register_only` to keep the functions around for backwards
/// compatibility with old runtimes, but it should not be used anymore by new runtimes.
/// The implementation emulates the old behavior, but isn't doing any batch verification
/// anymore.
#[version(1, register_only)]
fn ed25519_batch_verify(
&mut self,
sig: &ed25519::Signature,
msg: &[u8],
pub_key: &ed25519::Public,
) -> bool {
let res = ed25519_verify(sig, msg, pub_key);
if let Some(ext) = self.extension::<VerificationExtDeprecated>() {
ext.0 &= res;
}
res
}
/// Verify `sr25519` signature.
///
/// Returns `true` when the verification was successful.
#[version(2)]
fn sr25519_verify(sig: &sr25519::Signature, msg: &[u8], pub_key: &sr25519::Public) -> bool {
sr25519::Pair::verify(sig, msg, pub_key)
}
/// Register a `sr25519` signature for batch verification.
///
/// Batch verification must be enabled by calling [`start_batch_verify`].
/// If batch verification is not enabled, the signature will be verified immediately.
/// To get the result of the batch verification, [`finish_batch_verify`]
/// needs to be called.
///
/// Returns `true` when the verification is either successful or batched.
///
/// NOTE: Is tagged with `register_only` to keep the functions around for backwards
/// compatibility with old runtimes, but it should not be used anymore by new runtimes.
/// The implementation emulates the old behavior, but isn't doing any batch verification
/// anymore.
#[version(1, register_only)]
fn sr25519_batch_verify(
&mut self,
sig: &sr25519::Signature,
msg: &[u8],
pub_key: &sr25519::Public,
) -> bool {
let res = sr25519_verify(sig, msg, pub_key);
if let Some(ext) = self.extension::<VerificationExtDeprecated>() {
ext.0 &= res;
}
res
}
/// Start verification extension.
///
/// NOTE: Is tagged with `register_only` to keep the functions around for backwards
/// compatibility with old runtimes, but it should not be used anymore by new runtimes.
/// The implementation emulates the old behavior, but isn't doing any batch verification
/// anymore.
#[version(1, register_only)]
fn start_batch_verify(&mut self) {
self.register_extension(VerificationExtDeprecated(true))
.expect("Failed to register required extension: `VerificationExt`");
}
/// Finish batch-verification of signatures.
///
/// Verify or wait for verification to finish for all signatures which were previously
/// deferred by `sr25519_verify`/`ed25519_verify`.
///
/// Will panic if no `VerificationExt` is registered (`start_batch_verify` was not called).
///
/// NOTE: Is tagged with `register_only` to keep the functions around for backwards
/// compatibility with old runtimes, but it should not be used anymore by new runtimes.
/// The implementation emulates the old behavior, but isn't doing any batch verification
/// anymore.
#[version(1, register_only)]
fn finish_batch_verify(&mut self) -> bool {
let result = self
.extension::<VerificationExtDeprecated>()
.expect("`finish_batch_verify` should only be called after `start_batch_verify`")
.0;
self.deregister_extension::<VerificationExtDeprecated>()
.expect("No verification extension in current context!");
result
}
/// Returns all `sr25519` public keys for the given key id from the keystore.
fn sr25519_public_keys(&mut self, id: KeyTypeId) -> Vec<sr25519::Public> {
self.extension::<KeystoreExt>()
.expect("No `keystore` associated for the current context!")
.sr25519_public_keys(id)
}
/// Generate an `sr22519` key for the given key type using an optional seed and
/// store it in the keystore.
///
/// The `seed` needs to be a valid utf8.
///
/// Returns the public key.
fn sr25519_generate(&mut self, id: KeyTypeId, seed: Option<Vec<u8>>) -> sr25519::Public {
let seed = seed.as_ref().map(|s| std::str::from_utf8(s).expect("Seed is valid utf8!"));
self.extension::<KeystoreExt>()
.expect("No `keystore` associated for the current context!")
.sr25519_generate_new(id, seed)
.expect("`sr25519_generate` failed")
}
/// Sign the given `msg` with the `sr25519` key that corresponds to the given public key and
/// key type in the keystore.
///
/// Returns the signature.
fn sr25519_sign(
&mut self,
id: KeyTypeId,
pub_key: &sr25519::Public,
msg: &[u8],
) -> Option<sr25519::Signature> {
self.extension::<KeystoreExt>()
.expect("No `keystore` associated for the current context!")
.sr25519_sign(id, pub_key, msg)
.ok()
.flatten()
}
/// Verify an `sr25519` signature.
///
/// Returns `true` when the verification in successful regardless of
/// signature version.
fn sr25519_verify(sig: &sr25519::Signature, msg: &[u8], pubkey: &sr25519::Public) -> bool {
sr25519::Pair::verify_deprecated(sig, msg, pubkey)
}
/// Returns all `ecdsa` public keys for the given key id from the keystore.