Skip to content

Latest commit

 

History

History
109 lines (84 loc) · 3.05 KB

find-rank-top-500-numbers.md

File metadata and controls

109 lines (84 loc) · 3.05 KB

如何找出排名前 500 的数?

题目描述

有 20 个数组,每个数组有 500 个元素,并且有序排列。如何在这 20*500 个数中找出前 500 的数?

解答思路

对于 TopK 问题,最常用的方法是使用堆排序。对本题而言,假设数组降序排列,可以采用以下方法:

首先建立大顶堆,堆的大小为数组的个数,即为 20,把每个数组最大的值存到堆中。

接着删除堆顶元素,保存到另一个大小为 500 的数组中,然后向大顶堆插入删除的元素所在数组的下一个元素。

重复上面的步骤,直到删除完第 500 个元素,也即找出了最大的前 500 个数。

为了在堆中取出一个数据后,能知道它是从哪个数组中取出的,从而可以从这个数组中取下一个值,可以把数组的指针存放到堆中,对这个指针提供比较大小的方法。

import lombok.Data;

import java.util.Arrays;
import java.util.PriorityQueue;

/**
 * @author https://github.com/yanglbme
 */
@Data
public class DataWithSource implements Comparable<DataWithSource> {
    /**
     * 数值
     */
    private int value;

    /**
     * 记录数值来源的数组
     */
    private int source;

    /**
     * 记录数值在数组中的索引
     */
    private int index;

    public DataWithSource(int value, int source, int index) {
        this.value = value;
        this.source = source;
        this.index = index;
    }

    /**
     *
     * 由于 PriorityQueue 使用小顶堆来实现,这里通过修改
     * 两个整数的比较逻辑来让 PriorityQueue 变成大顶堆
     */
    @Override
    public int compareTo(DataWithSource o) {
        return Integer.compare(o.getValue(), this.value);
    }
}

class Test {
    public static int[] getTop(int[][] data) {
        int rowSize = data.length;
        int columnSize = data[0].length;

        // 创建一个columnSize大小的数组,存放结果
        int[] result = new int[columnSize];

        PriorityQueue<DataWithSource> maxHeap = new PriorityQueue<>();
        for (int i = 0; i < rowSize; ++i) {
            // 将每个数组的最大一个元素放入堆中
            DataWithSource d = new DataWithSource(data[i][0], i, 0);
            maxHeap.add(d);
        }

        int num = 0;
        while (num < columnSize) {
            // 删除堆顶元素
            DataWithSource d = maxHeap.poll();
            result[num++] = d.getValue();
            if (num >= columnSize) {
                break;
            }

            d.setValue(data[d.getSource()][d.getIndex() + 1]);
            d.setIndex(d.getIndex() + 1);
            maxHeap.add(d);
        }
        return result;

    }

    public static void main(String[] args) {
        int[][] data = {
                {29, 17, 14, 2, 1},
                {19, 17, 16, 15, 6},
                {30, 25, 20, 14, 5},
        };

        int[] top = getTop(data);
        System.out.println(Arrays.toString(top)); // [30, 29, 25, 20, 19]
    }
}

方法总结

求 TopK,不妨考虑一下堆排序?