Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support LLaVA_XTuner models #17

Merged
merged 18 commits into from
Dec 27, 2023
Merged
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -152,3 +152,5 @@ dmypy.json
# Cython debug symbols
cython_debug/

# Images
images/
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,10 +42,10 @@

**Supported PyTorch / HF Models**

| [**IDEFICS-9B-Instruct**🎞️🚅](https://huggingface.co/HuggingFaceM4/idefics-9b-instruct), [**IDEFICS-80B-Instruct**🎞️🚅](https://huggingface.co/HuggingFaceM4/idefics-80b-instruct) | [**InstructBLIP-[7B/13B]**](https://github.com/salesforce/LAVIS/blob/main/projects/instructblip/README.md) | [**LLaVA-[v1-7B/v1.5-7B/v1.5-13B]**](https://github.com/haotian-liu/LLaVA) | [**MiniGPT-4-[v1-7B/v1-13B/v2-7B]**](https://github.com/Vision-CAIR/MiniGPT-4) | [**mPLUG-Owl2**🎞️](https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2) |
| [**IDEFICS-9B-Instruct**](https://huggingface.co/HuggingFaceM4/idefics-9b-instruct)🎞️🚅, [**IDEFICS-80B-Instruct**](https://huggingface.co/HuggingFaceM4/idefics-80b-instruct)🎞️🚅 | [**InstructBLIP-[7B/13B]**](https://github.com/salesforce/LAVIS/blob/main/projects/instructblip/README.md) | [**LLaVA-[v1-7B/v1.5-7B/v1.5-13B]**](https://github.com/haotian-liu/LLaVA) | [**MiniGPT-4-[v1-7B/v1-13B/v2-7B]**](https://github.com/Vision-CAIR/MiniGPT-4) | [**mPLUG-Owl2**](https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)🎞️ |
| ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| [**OpenFlamingo-v2**](https://github.com/mlfoundations/open_flamingo)🎞️ | [**PandaGPT-13B**](https://github.com/yxuansu/PandaGPT) | [**Qwen-VL**🎞️🚅](https://huggingface.co/Qwen/Qwen-VL), [**Qwen-VL-Chat**🎞️🚅](https://huggingface.co/Qwen/Qwen-VL-Chat) | [**VisualGLM-6B**🚅](https://huggingface.co/THUDM/visualglm-6b) | [**InternLM-XComposer-7B**🎞️🚅](https://huggingface.co/internlm/internlm-xcomposer-7b) |
| [**ShareGPT4V-7B**🚅](https://sharegpt4v.github.io) | [**TransCore-M**](https://github.com/PCIResearch/TransCore-M) | | | |
| [**OpenFlamingo-v2**](https://github.com/mlfoundations/open_flamingo)🎞️ | [**PandaGPT-13B**](https://github.com/yxuansu/PandaGPT) | [**Qwen-VL**](https://huggingface.co/Qwen/Qwen-VL)🎞️🚅, [**Qwen-VL-Chat**](https://huggingface.co/Qwen/Qwen-VL-Chat)🎞️🚅 | [**VisualGLM-6B**](https://huggingface.co/THUDM/visualglm-6b)🚅 | [**InternLM-XComposer-7B**](https://huggingface.co/internlm/internlm-xcomposer-7b)🎞️🚅 |
| [**ShareGPT4V-7B**](https://sharegpt4v.github.io)🚅 | [**TransCore-M**](https://github.com/PCIResearch/TransCore-M) | [**LLaVA (XTuner)**](https://huggingface.co/xtuner/llava-internlm-7b)🚅 | | |

🎞️: Support multiple images as inputs, via the `multi_generate` interface.

Expand Down Expand Up @@ -83,7 +83,7 @@ pip install -e .

Following VLMs require the configuration step:

**Code Preparation & Installation**: InstructBLIP ([LAVIS](https://github.com/salesforce/LAVIS)), LLaVA ([LLaVA](https://github.com/haotian-liu/LLaVA)), MiniGPT-4 ([MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)), mPLUG-Owl2 ([mPLUG-Owl2](https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)), OpenFlamingo-v2 ([OpenFlamingo](https://github.com/mlfoundations/open_flamingo)), PandaGPT-13B ([PandaGPT](https://github.com/yxuansu/PandaGPT)), TransCore-M ([TransCore-M](https://github.com/PCIResearch/TransCore-M)).
**Code Preparation & Installation**: InstructBLIP ([LAVIS](https://github.com/salesforce/LAVIS)), LLaVA ([LLaVA](https://github.com/haotian-liu/LLaVA)), MiniGPT-4 ([MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4)), mPLUG-Owl2 ([mPLUG-Owl2](https://github.com/X-PLUG/mPLUG-Owl/tree/main/mPLUG-Owl2)), OpenFlamingo-v2 ([OpenFlamingo](https://github.com/mlfoundations/open_flamingo)), PandaGPT-13B ([PandaGPT](https://github.com/yxuansu/PandaGPT)), TransCore-M ([TransCore-M](https://github.com/PCIResearch/TransCore-M)), LLaVA-XTuner ([XTuner](https://github.com/InternLM/xtuner)).

**Manual Weight Preparation & Configuration**: InstructBLIP, LLaVA-v1-7B, MiniGPT-4, OpenFlamingo-v2, PandaGPT-13B

Expand Down
5 changes: 4 additions & 1 deletion vlmeval/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,5 +45,8 @@
'GPT4V': partial(GPT4V, model='gpt-4-vision-preview', temperature=0, img_size=512, img_detail='low'),
'GPT4V_INT': partial(GPT4V_Internal, model='gpt-4-vision-preview', temperature=0, img_size=512, img_detail='low', retry=10),
'GeminiProVision': partial(GeminiProVision, temperature=0, retry=10),
'QwenVLPlus': partial(QwenVLPlus, temperature=0, retry=10)
'QwenVLPlus': partial(QwenVLPlus, temperature=0, retry=10),
'llava-internlm-7b': partial(LLaVA_XTuner, llm_path='internlm/internlm-chat-7b', llava_path='xtuner/llava-internlm-7b', visual_encoder_path='openai/clip-vit-large-patch14-336', visual_select_layer=-2, prompt_template='internlm_chat'),
'llava-v1.5-7b-xtuner': partial(LLaVA_XTuner, llm_path='lmsys/vicuna-7b-v1.5', llava_path='xtuner/llava-v1.5-7b-xtuner', visual_encoder_path='openai/clip-vit-large-patch14-336', visual_select_layer=-2, prompt_template='vicuna'),
'llava-v1.5-13b-xtuner': partial(LLaVA_XTuner, llm_path='lmsys/vicuna-13b-v1.5', llava_path='xtuner/llava-v1.5-13b-xtuner', visual_encoder_path='openai/clip-vit-large-patch14-336', visual_select_layer=-2, prompt_template='vicuna'),
}
1 change: 1 addition & 0 deletions vlmeval/vlm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,4 @@
from .minigpt4 import MiniGPT4
from .xcomposer import XComposer
from .mplug_owl2 import mPLUG_Owl2
from .llava_xtuner import LLaVA_XTuner
4 changes: 2 additions & 2 deletions vlmeval/vlm/llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def build_prompt(self, line, dataset=None):
question = line['question']
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
if hint is not None:
question + hint + '\n' + question
question = hint + '\n' + question

options = {
cand: line[cand]
Expand Down Expand Up @@ -107,4 +107,4 @@ def generate(self, image_path, prompt, dataset=None):
with torch.inference_mode():
output_ids = self.model.generate(input_ids, images=image_tensor, stopping_criteria=[stopping_criteria], **self.kwargs)
output = self.tokenizer.decode(output_ids[0, input_ids.shape[1]: ]).strip().split("</s>")[0]
return output
return output
213 changes: 213 additions & 0 deletions vlmeval/vlm/llava_xtuner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
import os
import os.path as osp
import string
import warnings

import pandas as pd
import torch
from huggingface_hub import snapshot_download
from PIL import Image
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
CLIPImageProcessor, CLIPVisionModel,
GenerationConfig)

from ..smp import cn_string, get_cache_path
from ..utils import DATASET_TYPE, CustomPrompt


class LLaVA_XTuner(CustomPrompt):

INSTALL_REQ = True

def __init__(self,
llava_path,
llm_path=None,
visual_encoder_path=None,
visual_select_layer=-2,
prompt_template=None,
torch_dtype=torch.float16):
try:
from peft import PeftModel
from xtuner.tools.utils import get_chat_utils
from xtuner.utils import PROMPT_TEMPLATE
except Exception:
warnings.warn(
'Please install xtuner with `pip install -U xtuner` before '
'using LLaVA_XTuner')
exit(-1)

if not osp.isdir(llava_path):
cache_path = get_cache_path(llava_path)
if cache_path is not None:
llava_path = cache_path
else:
llava_path = snapshot_download(repo_id=llava_path)
assert osp.exists(llava_path) and osp.isdir(llava_path)

# build visual_encoder
if 'llm' in os.listdir(llava_path):
assert llm_path is None, (
"Please don't specify the `llm_path` since passed "
'`llava_path` contains a LLM!')
llm_path = osp.join(llava_path, 'llm')
else:
assert llm_path is not None, 'Please specify the `llm_path`!'

llm = AutoModelForCausalLM.from_pretrained(llm_path,
trust_remote_code=True,
torch_dtype=torch_dtype,
device_map='cpu')
tokenizer = AutoTokenizer.from_pretrained(llm_path,
trust_remote_code=True,
encode_special_tokens=True)
print(f'Load LLM from {llm_path}')

# build visual_encoder
if 'visual_encoder' in os.listdir(llava_path):
assert visual_encoder_path is None, (
"Please don't specify the `visual_encoder_path` since passed "
'`llava_path` contains a visual encoder!')
visual_encoder_path = osp.join(llava_path, 'visual_encoder')
else:
assert visual_encoder_path is not None, (
'Please specify the `visual_encoder_path`!')
visual_encoder = CLIPVisionModel.from_pretrained(
visual_encoder_path, torch_dtype=torch_dtype, device_map='cpu')
image_processor = CLIPImageProcessor.from_pretrained(
visual_encoder_path)
print(f'Load visual_encoder from {visual_encoder_path}')

# load adapter
if 'llm_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'llm_adapter')
llm = PeftModel.from_pretrained(llm,
adapter_path,
device_map='cpu')
print(f'Load LLM adapter from {llava_path}')
if 'visual_encoder_adapter' in os.listdir(llava_path):
adapter_path = osp.join(llava_path, 'visual_encoder_adapter')
visual_encoder = PeftModel.from_pretrained(visual_encoder,
adapter_path,
device_map='cpu')
print(f'Load visual_encoder adapter from {llava_path}')

# build projector
projector_path = osp.join(llava_path, 'projector')
projector = AutoModel.from_pretrained(projector_path,
torch_dtype=torch_dtype,
device_map='cpu')
print(f'Load projector from {llava_path}')

llm.eval()
visual_encoder.eval()
projector.eval()

self.llm = llm.cuda()
self.tokenizer = tokenizer
self.visual_encoder = visual_encoder.cuda()
self.image_processor = image_processor
self.projector = projector.cuda()
self.visual_select_layer = visual_select_layer
if prompt_template is not None:
self.prompt_template = PROMPT_TEMPLATE[prompt_template]
else:
self.prompt_template = None

_, self.stop_criteria = get_chat_utils(self.llm)

def build_gen_config(self, dataset):
gen_kwargs = dict(max_new_tokens=1024,
do_sample=True,
temperature=1,
num_beams=5,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None else
self.tokenizer.eos_token_id)
# For single word generation
if (dataset is not None
and DATASET_TYPE(dataset) in ['multi-choice', 'Y/N']):
gen_kwargs.update(
dict(max_new_tokens=5, do_sample=False, num_beams=1))
return GenerationConfig(**gen_kwargs)

def use_custom_prompt(self, dataset):
assert dataset is not None
if DATASET_TYPE(dataset) == 'multi-choice':
return True
return False

def build_prompt(self, line, dataset=None):
assert self.use_custom_prompt(dataset)
assert dataset is None or isinstance(dataset, str)
tgt_path = self.dump_image(line, dataset)

question = line['question']
hint = line['hint'] if ('hint' in line
and not pd.isna(line['hint'])) else None
if hint is not None:
question = hint + '\n' + question

options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
for key, item in options.items():
question += f'\n{key}. {item}'

if not cn_string(question):
prompt = question + '\n' + ("Answer with the option's letter "
'from the given choices directly.')
else:
prompt = question + '\n' + '请直接回答选项字母。'

return {'image': tgt_path, 'text': prompt}

def generate(self, image_path, prompt, dataset=None):
from xtuner.dataset.utils import expand2square
from xtuner.model.utils import prepare_inputs_labels_for_multimodal
from xtuner.utils import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
image = Image.open(image_path).convert('RGB')
image = expand2square(
image,
tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
image = image.cuda().unsqueeze(0)
visual_outputs = self.visual_encoder(image, output_hidden_states=True)
pixel_values = self.projector(
visual_outputs.hidden_states[self.visual_select_layer][:, 1:])

inputs = DEFAULT_IMAGE_TOKEN + '\n' + prompt

if self.prompt_template:
inputs = self.prompt_template['INSTRUCTION'].format(input=inputs)

chunk_encode = []
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0:
cur_encode = self.tokenizer(chunk)
else:
cur_encode = self.tokenizer(chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
ids.extend(cur_chunk_encode['input_ids'])
if idx != len(chunk_encode) - 1:
ids.append(IMAGE_TOKEN_INDEX)
ids = torch.tensor(ids).cuda().unsqueeze(0)
mm_inputs = prepare_inputs_labels_for_multimodal(
llm=self.llm, input_ids=ids, pixel_values=pixel_values)

gen_config = self.build_gen_config(dataset)
generate_output = self.llm.generate(
**mm_inputs,
generation_config=gen_config,
streamer=None,
bos_token_id=self.tokenizer.bos_token_id,
stopping_criteria=self.stop_criteria)
predict = self.tokenizer.decode(generate_output[0],
skip_special_tokens=True).strip()
return predict