diff --git a/src/gpu/nvidia/README.md b/src/gpu/nvidia/README.md index 5743cbba6f1..24c07113b47 100644 --- a/src/gpu/nvidia/README.md +++ b/src/gpu/nvidia/README.md @@ -330,6 +330,21 @@ backward propagation respectively. * Supported data type are `f32`, `f16`, `bf16` and `s8`. +#### Using SYCL Kernels + +The implementation supports both forward and backward directions. + +* Supported formats: `NCDHW`, `NDHWC`, `NCHW`, `NHWC`, `NCW`, `NWC` + +##### Forward Direction +* Supported data types: `f32`, `bf16`, `f16`, `s8`, `u8` and `s32` +* Supported post-ops: `binary`, `eltwise_linear` +* Supported algorithms: `max`, `avg_p`, `avg_np` + +##### Backward Direction +* Supported data types: `f32`, `bf16`, `f16` +* Supported algorithms: `max`, `avg_p`, `avg_np` + ### PReLU The PReLU primitive (Leaky ReLU with a trainable alpha parameter) is implemented @@ -341,6 +356,22 @@ propagations. * Forward pass supports `f32`, `f16`, `bf16`, `s8` and `u8` data types * Backward pass supports `f32` and `bf16` data types +### Layer Normalization + +The Primitive layer normalization is implemented through SYCL kernels.The implementation supports both forward and backward directions. + +* Supported formats: `NCDHW`, `NDHWC`, `NCHW`, `NHWC`, `NCW`, `NWC`, `NC` + +##### Forward direction +* Supported data types for source and destination: `f32`, `bf16`, `f16`, `s8`, `u8` +* Supported attributes: `Scales` +* Supported flags: `dnnl_global_stats`, `dnnl_use_scale`, `dnnl_use_shift` + +##### Backward direction +* Supported data types for source and destination: `f32`, `bf16`, `f16` +* Supported data types for mean and variance: `f32` +* Supported flags: `dnnl_global_stats`, `dnnl_use_scale`, `dnnl_use_shift` + ### Reorder The `cudnnTransform` function is the equivalent of oneDNN reorder function.