-
Notifications
You must be signed in to change notification settings - Fork 1k
/
deconvolution.cpp
212 lines (182 loc) · 8.41 KB
/
deconvolution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*******************************************************************************
* Copyright 2024 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/// @example deconvolution.cpp
/// > Annotated version: @ref deconvolution_example_cpp
///
/// @page deconvolution_example_cpp_short
///
/// This C++ API example demonstrates how to create and execute a
/// [Deconvolution](@ref dev_guide_convolution) primitive in forward propagation
/// mode.
///
/// Key optimizations included in this example:
/// - Creation of optimized memory format from the primitive descriptor;
/// - Primitive attributes with fused post-ops.
///
/// @page deconvolution_example_cpp Deconvolution Primitive Example
/// @copydetails deconvolution_example_cpp_short
///
/// @include deconvolution.cpp
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "example_utils.hpp"
#include "oneapi/dnnl/dnnl.hpp"
using namespace dnnl;
using tag = memory::format_tag;
using dt = memory::data_type;
void deconvolution_example(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 3, // batch size
IC = 32, // input channels
IH = 13, // input height
IW = 13, // input width
OC = 64, // output channels
KH = 3, // weights height
KW = 3, // weights width
PH_L = 1, // height padding: left
PH_R = 1, // height padding: right
PW_L = 1, // width padding: left
PW_R = 1, // width padding: right
SH = 4, // height-wise stride
SW = 4, // width-wise stride
// In a convolution operation, the output height and
// width are computed as:
// OH = (IH - KH + PH_L + PH_R) / SH + 1
// OW = (IW - KW + PW_L + PW_R) / SW + 1
// However, in a deconvolution operation, the computation
// is reversed:
OH = (IH - 1) * SH - PH_L - PH_R + KH, // output height
OW = (IW - 1) * SW - PW_L - PW_R + KW; // output width
// Source (src), weights, bias, and destination (dst) tensors
// dimensions.
memory::dims src_dims = {N, IC, IH, IW};
memory::dims weights_dims = {OC, IC, KH, KW};
memory::dims bias_dims = {OC};
memory::dims dst_dims = {N, OC, OH, OW};
// Strides, padding dimensions.
memory::dims strides_dims = {SH, SW};
memory::dims padding_dims_l = {PH_L, PW_L};
memory::dims padding_dims_r = {PH_R, PW_R};
// Allocate buffers.
std::vector<float> src_data(product(src_dims));
std::vector<float> weights_data(product(weights_dims));
std::vector<float> bias_data(OC);
std::vector<float> dst_data(product(dst_dims));
// Initialize src, weights, and dst tensors.
std::generate(src_data.begin(), src_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
std::generate(weights_data.begin(), weights_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(bias_data.begin(), bias_data.end(), []() {
static int i = 0;
return std::tanh(float(i++));
});
// Create memory objects for tensor data (src, weights, dst). In this
// example, NCHW layout is assumed for src and dst, and OIHW for weights.
auto user_src_mem = memory({src_dims, dt::f32, tag::nchw}, engine);
auto user_weights_mem = memory({weights_dims, dt::f32, tag::oihw}, engine);
auto user_dst_mem = memory({dst_dims, dt::f32, tag::nchw}, engine);
// Create memory descriptors with format_tag::any for the primitive. This
// enables the deconvolution primitive to choose memory layouts for an
// optimized primitive implementation, and these layouts may differ from the
// ones provided by the user.
auto deconv_src_md = memory::desc(src_dims, dt::f32, tag::any);
auto deconv_weights_md = memory::desc(weights_dims, dt::f32, tag::any);
auto deconv_dst_md = memory::desc(dst_dims, dt::f32, tag::any);
// Create memory descriptor and memory object for input bias.
auto user_bias_md = memory::desc(bias_dims, dt::f32, tag::a);
auto user_bias_mem = memory(user_bias_md, engine);
// Write data to memory object's handle.
write_to_dnnl_memory(src_data.data(), user_src_mem);
write_to_dnnl_memory(weights_data.data(), user_weights_mem);
write_to_dnnl_memory(bias_data.data(), user_bias_mem);
// Create primitive post-ops (ReLU).
const float alpha = 0.f;
const float beta = 0.f;
post_ops deconv_ops;
deconv_ops.append_eltwise(algorithm::eltwise_relu, alpha, beta);
primitive_attr deconv_attr;
deconv_attr.set_post_ops(deconv_ops);
// Create primitive descriptor.
// Here we use deconvolution which is a transposed convolution.
// The way the weights are applied is the key difference between convolution
// and deconvolution. In a convolution, the weights are used to reduce
// the input data, while in a deconvolution, they are used to expand
// the input data.
auto deconv_pd = deconvolution_forward::primitive_desc(engine,
prop_kind::forward_training, algorithm::deconvolution_direct,
deconv_src_md, deconv_weights_md, user_bias_md, deconv_dst_md,
strides_dims, padding_dims_l, padding_dims_r, deconv_attr);
// For now, assume that the src, weights, and dst memory layouts generated
// by the primitive and the ones provided by the user are identical.
auto deconv_src_mem = user_src_mem;
auto deconv_weights_mem = user_weights_mem;
auto deconv_dst_mem = user_dst_mem;
// Reorder the data in case the src and weights memory layouts generated by
// the primitive and the ones provided by the user are different. In this
// case, we create additional memory objects with internal buffers that will
// contain the reordered data. The data in dst will be reordered after the
// deconvolution computation has finalized.
if (deconv_pd.src_desc() != user_src_mem.get_desc()) {
deconv_src_mem = memory(deconv_pd.src_desc(), engine);
reorder(user_src_mem, deconv_src_mem)
.execute(engine_stream, user_src_mem, deconv_src_mem);
}
if (deconv_pd.weights_desc() != user_weights_mem.get_desc()) {
deconv_weights_mem = memory(deconv_pd.weights_desc(), engine);
reorder(user_weights_mem, deconv_weights_mem)
.execute(engine_stream, user_weights_mem, deconv_weights_mem);
}
if (deconv_pd.dst_desc() != user_dst_mem.get_desc()) {
deconv_dst_mem = memory(deconv_pd.dst_desc(), engine);
}
// Create the primitive.
auto deconv_prim = deconvolution_forward(deconv_pd);
// Primitive arguments.
std::unordered_map<int, memory> deconv_args;
deconv_args.insert({DNNL_ARG_SRC, deconv_src_mem});
deconv_args.insert({DNNL_ARG_WEIGHTS, deconv_weights_mem});
deconv_args.insert({DNNL_ARG_BIAS, user_bias_mem});
deconv_args.insert({DNNL_ARG_DST, deconv_dst_mem});
// Primitive execution: deconvolution with ReLU.
deconv_prim.execute(engine_stream, deconv_args);
// Reorder the data in case the dst memory descriptor generated by the
// primitive and the one provided by the user are different.
if (deconv_pd.dst_desc() != user_dst_mem.get_desc()) {
reorder(deconv_dst_mem, user_dst_mem)
.execute(engine_stream, deconv_dst_mem, user_dst_mem);
} else
user_dst_mem = deconv_dst_mem;
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(dst_data.data(), user_dst_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(
deconvolution_example, parse_engine_kind(argc, argv));
}