二叉查找树(Binary search tree),也叫有序二叉树(Ordered binary tree)
,排序二叉树(Sorted binary tree)
。
是指一个空树或者具有下列性质的二叉树:
- 若任意节点的左子树不为空,则左子树上所有的节点值小于它的根节点值
- 若任意节点的右子树不为空,则右子树上所有节点的值均大于它的根节点的值
- 任意节点左右子树也为二叉查找树
- 没有键值(key)相等的节点
有序的二叉查找树,中序遍历结果是递增的。 左小右大
typedef int ElemType;
typedef struct BiSearchTree{
ElemType key;
struct BiSearchTree *lChild;
struct BiSearchTree *rChild;
}BiSearchTree;
BiSearchTree *bisearch_tree_insert(BiSearchTree *tree,ElemType node);
int bisearch_tree_delete(BiSearchTree **tree,ElemType node);
int bisearch_tree_search(BiSearchTree *tree,ElemType node);
删除节点,需要重建排序树
- 删除节点是叶子节点(分支为0),结构不破坏
2)删除节点只有一个分支(分支为1),结构也不破坏
3)删除节点有2个分支,此时删除节点 ; 需要重建树
思路一: 选左子树的最大节点,或右子树最小节点替换
int bisearch_tree_delete(BiSearchTree **tree,ElemType node){
if (NULL==tree) {
return -1;
}
// 查找删除目标节点
BiSearchTree *target=*tree,*parent=NULL;
while (NULL!=target) {
if (node<target->key) {
parent=target;
target=target->lChild;
}else if(node==target->key){
break;
}else{
parent=target;
target=target->rChild;
}
}
if (NULL==target) {
printf("树为空,或想要删除的节点不存在\n");
return -1;
}
//该节点为叶子节点,直接删除
if (!target->rChild && !target->lChild)
{
if (NULL==parent) {////只有一个节点的二叉查找树
*tree=NULL;
}else{
if (target->key>parent->key) {
parent->rChild=NULL;
}else{
parent->lChild=NULL;
}
}
free(target);//父节点处理,不然野指针,造成崩溃
}
else if(!target->rChild){ //右子树空则只需重接它的左子树,用左子树替换掉当前要删除的节点
BiSearchTree *del=target->lChild;
target->key = target->lChild->key;
target->lChild=target->lChild->lChild;
target->rChild=target->lChild->rChild;
free(del);
}
else if(!target->lChild){ //左子树空只需重接它的右子树
BiSearchTree *del=target->rChild;
target->key = target->rChild->key;
target->lChild=target->rChild->lChild;
target->rChild=target->rChild->rChild;
free(del);
}
else{ //左右子树均不空,p,t 2个指针一前以后,将左子树最大的节点(肯定是一个最右的节点)替换到删除的节点后,还需要处理左子树最大节点的左子树
BiSearchTree *p=target,*t=target->lChild;
while (t->rChild) {
p = t;
t=t->rChild;
}// 找到左子树最大的,是删除节点的直接“前驱”
target->key = t->key;
if (p!=target) {
p->rChild = t->lChild;
}else{
target->lChild = t->lChild;
}
free(t);
}
return 0;
}