-
Notifications
You must be signed in to change notification settings - Fork 54
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
implement impute_mode #213
Labels
Milestone
Comments
Merged
This approach includes a .integer method, which just uses library(naniar)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
vec <- rnorm(10)
vec[sample(1:10, 3)] <- NA
impute_mode(vec)
#> [1] -0.8667728 -1.3941443 -1.2821929 -1.1371585 -0.7508977 -1.0704500
#> [7] -1.1450668 -1.1450668 1.1446806 -1.1450668
dat <- tibble(
num = rnorm(10),
int = as.integer(rpois(10, 5)),
fct = factor(LETTERS[1:10])
) %>%
mutate(
across(
everything(),
\(x) set_prop_miss(x, prop = 0.25)
)
)
dat
#> # A tibble: 10 × 3
#> num int fct
#> <dbl> <int> <fct>
#> 1 NA 6 A
#> 2 NA NA B
#> 3 0.364 7 C
#> 4 -1.22 4 D
#> 5 0.0346 3 <NA>
#> 6 0.0860 5 F
#> 7 -0.486 4 <NA>
#> 8 -0.930 5 H
#> 9 0.932 NA I
#> 10 -0.946 5 J
dat %>%
nabular() %>%
mutate(
num = impute_mode(num),
int = impute_mode(int),
fct = impute_mode(fct)
)
#> # A tibble: 10 × 6
#> num int fct num_NA int_NA fct_NA
#> <dbl> <dbl> <fct> <fct> <fct> <fct>
#> 1 -0.787 6 A NA !NA !NA
#> 2 -0.787 5 B NA NA !NA
#> 3 0.364 7 C !NA !NA !NA
#> 4 -1.22 4 D !NA !NA !NA
#> 5 0.0346 3 A !NA !NA NA
#> 6 0.0860 5 F !NA !NA !NA
#> 7 -0.486 4 A !NA !NA NA
#> 8 -0.930 5 H !NA !NA !NA
#> 9 0.932 5 I !NA NA !NA
#> 10 -0.946 5 J !NA !NA !NA Created on 2023-04-10 with reprex v2.0.2 Session infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.3 (2023-03-15)
#> os macOS Ventura 13.2
#> system aarch64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Australia/Hobart
#> date 2023-04-10
#> pandoc 2.19.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> cli 3.6.0 2023-01-09 [1] CRAN (R 4.2.0)
#> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.2.0)
#> digest 0.6.31 2022-12-11 [1] CRAN (R 4.2.0)
#> dplyr * 1.1.1 2023-03-22 [1] CRAN (R 4.2.0)
#> evaluate 0.20 2023-01-17 [1] CRAN (R 4.2.0)
#> fansi 1.0.4 2023-01-22 [1] CRAN (R 4.2.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
#> fs 1.6.1 2023-02-06 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 3.4.1 2023-02-10 [1] CRAN (R 4.2.0)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.0)
#> htmltools 0.5.4 2022-12-07 [1] CRAN (R 4.2.0)
#> knitr 1.42 2023-01-25 [1] CRAN (R 4.2.0)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> naniar * 1.0.0.9000 2023-04-10 [1] local
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> purrr 1.0.1 2023-01-10 [1] CRAN (R 4.2.0)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.0)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
#> rlang 1.1.0 2023-03-14 [1] CRAN (R 4.2.0)
#> rmarkdown 2.20 2023-01-19 [1] CRAN (R 4.2.0)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> styler 1.9.0 2023-01-15 [1] CRAN (R 4.2.0)
#> tibble 3.2.1 2023-03-20 [1] CRAN (R 4.2.0)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.0)
#> utf8 1.2.3 2023-01-31 [1] CRAN (R 4.2.0)
#> vctrs 0.6.1 2023-03-22 [1] CRAN (R 4.2.0)
#> visdat 0.6.0 2023-02-02 [1] local
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
#> xfun 0.37 2023-01-31 [1] CRAN (R 4.2.0)
#> yaml 2.3.7 2023-01-23 [1] CRAN (R 4.2.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library
#>
#> ────────────────────────────────────────────────────────────────────────────── |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Current branch: https://github.com/njtierney/naniar/tree/impute-mode
Uses suggestions from here: https://stackoverflow.com/questions/2547402/is-there-a-built-in-function-for-finding-the-mode
Personally I think that it would be best if the new mode function contained an option for different estimations of the mode. Using the density is neat, but doesn't work in cases where you have only integers
The text was updated successfully, but these errors were encountered: