Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Interpreting the Togo Dataset Result #133

Open
DenizOzal opened this issue Apr 4, 2024 · 1 comment
Open

Interpreting the Togo Dataset Result #133

DenizOzal opened this issue Apr 4, 2024 · 1 comment

Comments

@DenizOzal
Copy link

DenizOzal commented Apr 4, 2024

Hi @gabrieltseng and Crop Harvest team!
I am trying to understand togo dataset result which you gave on the Google Colab file. The result of preds_np is 17x17 matrix like in following:

[[0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
0.27 0.27 0.27]
[0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.27 0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.27]
[0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.27]
[0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.27]
[0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.27]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]
[0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
0.28 0.28 0.28]]

My question is really simple actually, to understand if one area contains crop or non-crop do we need a threshold value? For instance can we say that taking the mean of preds_np and it does not contain or contain crop since the mean is about 0.27-0.28.

@gabrieltseng
Copy link
Collaborator

Hi @DenizOzal ,

Apologies for the delayed response. In the example notebook, the model is an sklearn model. The inference class used calls predict_proba to obtain the predictions:

return self.model.predict_proba(flattened_batch)[:, 1]

So yes, in order to obtain a binary value (crop or no crop), thresholding makes sense!

I hope this helps

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants