forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Jin Ma <[email protected]>
- Loading branch information
Jin Ma
committed
Sep 28, 2016
1 parent
bcc28df
commit 46002e3
Showing
3 changed files
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# coding=utf-8 | ||
# pylint: disable=C0111,too-many-arguments,too-many-instance-attributes,too-many-locals,redefined-outer-name,fixme | ||
# pylint: disable=superfluous-parens, no-member, invalid-name | ||
import sys | ||
|
||
sys.path.insert(0, "../../python") | ||
import numpy as np | ||
import mxnet as mx | ||
|
||
from lstm_model import LSTMInferenceModel | ||
|
||
import cv2, random | ||
from captcha.image import ImageCaptcha | ||
|
||
BATCH_SIZE = 32 | ||
SEQ_LENGTH = 80 | ||
|
||
|
||
def ctc_label(p): | ||
ret = [] | ||
p1 = [0] + p | ||
for i in range(len(p)): | ||
c1 = p1[i] | ||
c2 = p1[i + 1] | ||
if c2 == 0 or c2 == c1: | ||
continue | ||
ret.append(c2) | ||
return ret | ||
|
||
|
||
def remove_blank(l): | ||
ret = [] | ||
for i in range(len(l)): | ||
if l[i] == 0: | ||
break | ||
ret.append(l[i]) | ||
return ret | ||
|
||
|
||
def gen_rand(): | ||
buf = "" | ||
max_len = random.randint(3,4) | ||
for i in range(max_len): | ||
buf += str(random.randint(0,9)) | ||
return buf | ||
|
||
if __name__ == '__main__': | ||
num_hidden = 100 | ||
num_lstm_layer = 2 | ||
|
||
num_epoch = 10 | ||
learning_rate = 0.001 | ||
momentum = 0.9 | ||
num_label = 4 | ||
|
||
n_channel = 1 | ||
contexts = [mx.context.gpu(0)] | ||
_, arg_params, __ = mx.model.load_checkpoint('ocr', num_epoch) | ||
|
||
num = gen_rand() | ||
print 'Generated number: ' + num | ||
# change the fonts accordingly | ||
captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf']) | ||
img = captcha.generate(num) | ||
img = np.fromstring(img.getvalue(), dtype='uint8') | ||
img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) | ||
img = cv2.resize(img, (80, 30)) | ||
|
||
img = img.transpose(1, 0) | ||
|
||
img = img.reshape((1, 80 * 30)) | ||
img = np.multiply(img, 1 / 255.0) | ||
|
||
data_shape = [('data', (1, n_channel * 80 * 30))] | ||
input_shapes = dict(data_shape) | ||
|
||
model = LSTMInferenceModel(num_lstm_layer, | ||
SEQ_LENGTH, | ||
num_hidden=num_hidden, | ||
num_label=num_label, | ||
arg_params=arg_params, | ||
data_size = n_channel * 30 * 80, | ||
ctx=contexts[0]) | ||
|
||
prob = model.forward(mx.nd.array(img)) | ||
|
||
p = [] | ||
for k in range(SEQ_LENGTH): | ||
p.append(np.argmax(prob[k])) | ||
|
||
p = ctc_label(p) | ||
print 'Predicted label: ' + str(p) | ||
|
||
pred = '' | ||
for c in p: | ||
pred += str((int(c) - 1)) | ||
|
||
print 'Predicted number: ' + pred | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
|
||
# pylint: disable=C0111,too-many-arguments,too-many-instance-attributes,too-many-locals,redefined-outer-name,fixme | ||
# pylint: disable=superfluous-parens, no-member, invalid-name | ||
import sys | ||
sys.path.insert(0, "../../python") | ||
import numpy as np | ||
import mxnet as mx | ||
|
||
from lstm import LSTMState, LSTMParam, lstm, lstm_inference_symbol | ||
|
||
|
||
class LSTMInferenceModel(object): | ||
def __init__(self, | ||
num_lstm_layer, | ||
seq_len, | ||
num_hidden, | ||
num_label, | ||
arg_params, | ||
data_size, | ||
ctx=mx.cpu()): | ||
self.sym = lstm_inference_symbol(num_lstm_layer, | ||
seq_len, | ||
num_hidden, | ||
num_label) | ||
|
||
batch_size = 1 | ||
init_c = [('l%d_init_c'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] | ||
init_h = [('l%d_init_h'%l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] | ||
data_shape = [("data", (batch_size, data_size))] | ||
input_shapes = dict(init_c + init_h + data_shape) | ||
self.executor = self.sym.simple_bind(ctx=ctx, **input_shapes) | ||
|
||
for key in self.executor.arg_dict.keys(): | ||
if key in arg_params: | ||
arg_params[key].copyto(self.executor.arg_dict[key]) | ||
|
||
state_name = [] | ||
for i in range(num_lstm_layer): | ||
state_name.append("l%d_init_c" % i) | ||
state_name.append("l%d_init_h" % i) | ||
|
||
self.states_dict = dict(zip(state_name, self.executor.outputs[1:])) | ||
self.input_arr = mx.nd.zeros(data_shape[0][1]) | ||
|
||
def forward(self, input_data, new_seq=False): | ||
if new_seq == True: | ||
for key in self.states_dict.keys(): | ||
self.executor.arg_dict[key][:] = 0. | ||
input_data.copyto(self.executor.arg_dict["data"]) | ||
self.executor.forward() | ||
for key in self.states_dict.keys(): | ||
self.states_dict[key].copyto(self.executor.arg_dict[key]) | ||
prob = self.executor.outputs[0].asnumpy() | ||
return prob |