forked from things-nyc/arduino-lmic
-
Notifications
You must be signed in to change notification settings - Fork 212
/
radio.c
1443 lines (1255 loc) · 52.3 KB
/
radio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2014-2016 IBM Corporation.
* Copyright (c) 2016-2019 MCCI Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//! \file
#define LMIC_DR_LEGACY 0
#include "lmic.h"
// ----------------------------------------
// Registers Mapping
// // -type- 1272 vs 1276
#define RegFifo 0x00 // common
#define RegOpMode 0x01 // common see below
#define FSKRegBitrateMsb 0x02 // -
#define FSKRegBitrateLsb 0x03 // -
#define FSKRegFdevMsb 0x04 // -
#define FSKRegFdevLsb 0x05 // -
#define RegFrfMsb 0x06 // common FSK: 1272: 915; 1276: 434 MHz
#define RegFrfMid 0x07 // common ditto
#define RegFrfLsb 0x08 // common ditto
#define RegPaConfig 0x09 // common see below, many diffs
#define RegPaRamp 0x0A // common see below: bits 6..4 are diff
#define RegOcp 0x0B // common -
#define RegLna 0x0C // common bits 4..0 are diff.
#define FSKRegRxConfig 0x0D // -
#define LORARegFifoAddrPtr 0x0D
#define FSKRegRssiConfig 0x0E // -
#define LORARegFifoTxBaseAddr 0x0E
#define FSKRegRssiCollision 0x0F // -
#define LORARegFifoRxBaseAddr 0x0F
#define FSKRegRssiThresh 0x10 // -
#define LORARegFifoRxCurrentAddr 0x10
#define FSKRegRssiValue 0x11 // -
#define LORARegIrqFlagsMask 0x11
#define FSKRegRxBw 0x12 // -
#define LORARegIrqFlags 0x12
#define FSKRegAfcBw 0x13 // -
#define LORARegRxNbBytes 0x13
#define FSKRegOokPeak 0x14 // -
#define LORARegRxHeaderCntValueMsb 0x14
#define FSKRegOokFix 0x15 // -
#define LORARegRxHeaderCntValueLsb 0x15
#define FSKRegOokAvg 0x16 // -
#define LORARegRxPacketCntValueMsb 0x16
#define LORARegRxpacketCntValueLsb 0x17
#define LORARegModemStat 0x18
#define LORARegPktSnrValue 0x19
#define FSKRegAfcFei 0x1A // -
#define LORARegPktRssiValue 0x1A
#define FSKRegAfcMsb 0x1B // -
#define LORARegRssiValue 0x1B
#define FSKRegAfcLsb 0x1C // -
#define LORARegHopChannel 0x1C
#define FSKRegFeiMsb 0x1D // -
#define LORARegModemConfig1 0x1D
#define FSKRegFeiLsb 0x1E // -
#define LORARegModemConfig2 0x1E
#define FSKRegPreambleDetect 0x1F // -
#define LORARegSymbTimeoutLsb 0x1F
#define FSKRegRxTimeout1 0x20 // -
#define LORARegPreambleMsb 0x20
#define FSKRegRxTimeout2 0x21 // -
#define LORARegPreambleLsb 0x21
#define FSKRegRxTimeout3 0x22 // -
#define LORARegPayloadLength 0x22
#define FSKRegRxDelay 0x23 // -
#define LORARegPayloadMaxLength 0x23
#define FSKRegOsc 0x24 // -
#define LORARegHopPeriod 0x24
#define FSKRegPreambleMsb 0x25 // -
#define LORARegFifoRxByteAddr 0x25
#define FSKRegPreambleLsb 0x26 // -
#define LORARegModemConfig3 0x26
#define FSKRegSyncConfig 0x27 // -
#define LORARegFeiMsb 0x28
#define FSKRegSyncValue1 0x28 // -
#define LORAFeiMib 0x29
#define FSKRegSyncValue2 0x29 // -
#define LORARegFeiLsb 0x2A
#define FSKRegSyncValue3 0x2A // -
#define FSKRegSyncValue4 0x2B // -
#define LORARegRssiWideband 0x2C
#define FSKRegSyncValue5 0x2C // -
#define FSKRegSyncValue6 0x2D // -
#define FSKRegSyncValue7 0x2E // -
#define FSKRegSyncValue8 0x2F // -
#define LORARegIffReq1 0x2F
#define FSKRegPacketConfig1 0x30 // -
#define LORARegIffReq2 0x30
#define FSKRegPacketConfig2 0x31 // -
#define LORARegDetectOptimize 0x31
#define FSKRegPayloadLength 0x32 // -
#define FSKRegNodeAdrs 0x33 // -
#define LORARegInvertIQ 0x33
#define FSKRegBroadcastAdrs 0x34 // -
#define FSKRegFifoThresh 0x35 // -
#define FSKRegSeqConfig1 0x36 // -
#define LORARegHighBwOptimize1 0x36
#define FSKRegSeqConfig2 0x37 // -
#define LORARegDetectionThreshold 0x37
#define FSKRegTimerResol 0x38 // -
#define FSKRegTimer1Coef 0x39 // -
#define LORARegSyncWord 0x39
#define FSKRegTimer2Coef 0x3A // -
#define LORARegHighBwOptimize2 0x3A
#define FSKRegImageCal 0x3B // -
#define FSKRegTemp 0x3C // -
#define FSKRegLowBat 0x3D // -
#define FSKRegIrqFlags1 0x3E // -
#define FSKRegIrqFlags2 0x3F // -
#define RegDioMapping1 0x40 // common
#define RegDioMapping2 0x41 // common
#define RegVersion 0x42 // common
// #define RegAgcRef 0x43 // common
// #define RegAgcThresh1 0x44 // common
// #define RegAgcThresh2 0x45 // common
// #define RegAgcThresh3 0x46 // common
// #define RegPllHop 0x4B // common
// #define RegTcxo 0x58 // common
// #define RegPll 0x5C // common
// #define RegPllLowPn 0x5E // common
// #define RegFormerTemp 0x6C // common
// #define RegBitRateFrac 0x70 // common
#if defined(CFG_sx1276_radio)
#define RegTcxo 0x4B // common different addresses, same bits
#define RegPaDac 0x4D // common differnet addresses, same bits
#elif defined(CFG_sx1272_radio)
#define RegTcxo 0x58 // common
#define RegPaDac 0x5A // common
#endif
#define RegTcxo_TcxoInputOn (1u << 4)
// ----------------------------------------
// spread factors and mode for RegModemConfig2
#define SX1272_MC2_FSK 0x00
#define SX1272_MC2_SF7 0x70
#define SX1272_MC2_SF8 0x80
#define SX1272_MC2_SF9 0x90
#define SX1272_MC2_SF10 0xA0
#define SX1272_MC2_SF11 0xB0
#define SX1272_MC2_SF12 0xC0
// bandwidth for RegModemConfig1
#define SX1272_MC1_BW_125 0x00
#define SX1272_MC1_BW_250 0x40
#define SX1272_MC1_BW_500 0x80
// coding rate for RegModemConfig1
#define SX1272_MC1_CR_4_5 0x08
#define SX1272_MC1_CR_4_6 0x10
#define SX1272_MC1_CR_4_7 0x18
#define SX1272_MC1_CR_4_8 0x20
#define SX1272_MC1_IMPLICIT_HEADER_MODE_ON 0x04 // required for receive
#define SX1272_MC1_RX_PAYLOAD_CRCON 0x02
#define SX1272_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
// transmit power configuration for RegPaConfig
#define SX1272_PAC_PA_SELECT_PA_BOOST 0x80
#define SX1272_PAC_PA_SELECT_RFIO_PIN 0x00
// sx1276 RegModemConfig1
#define SX1276_MC1_BW_125 0x70
#define SX1276_MC1_BW_250 0x80
#define SX1276_MC1_BW_500 0x90
#define SX1276_MC1_CR_4_5 0x02
#define SX1276_MC1_CR_4_6 0x04
#define SX1276_MC1_CR_4_7 0x06
#define SX1276_MC1_CR_4_8 0x08
#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01
#ifdef CFG_sx1276_radio
# define SX127X_MC1_IMPLICIT_HEADER_MODE_ON SX1276_MC1_IMPLICIT_HEADER_MODE_ON
#else
# define SX127X_MC1_IMPLICIT_HEADER_MODE_ON SX1272_MC1_IMPLICIT_HEADER_MODE_ON
#endif
// transmit power configuration for RegPaConfig
#define SX1276_PAC_PA_SELECT_PA_BOOST 0x80
#define SX1276_PAC_PA_SELECT_RFIO_PIN 0x00
#define SX1276_PAC_MAX_POWER_MASK 0x70
// the bits to change for max power.
#define SX127X_PADAC_POWER_MASK 0x07
#define SX127X_PADAC_POWER_NORMAL 0x04
#define SX127X_PADAC_POWER_20dBm 0x07
// convert milliamperes to equivalent value for
// RegOcp; delivers conservative value.
#define SX127X_OCP_MAtoBITS(mA) \
((mA) < 45 ? 0 : \
(mA) <= 120 ? ((mA) - 45) / 5 : \
(mA) < 130 ? 0xF : \
(mA) < 240 ? ((mA) - 130) / 10 + 0x10 : \
27)
// bit in RegOcp that enables overcurrent protect.
#define SX127X_OCP_ENA 0x20
// sx1276 RegModemConfig2
#define SX1276_MC2_RX_PAYLOAD_CRCON 0x04
// sx1276 RegModemConfig3
#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
#define SX1276_MC3_AGCAUTO 0x04
// preamble for lora networks (nibbles swapped)
#define LORA_MAC_PREAMBLE 0x34
#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
#ifdef CFG_sx1276_radio
#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
#elif CFG_sx1272_radio
#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
#endif
//-----------------------------------------
// Parameters for RSSI monitoring
#define SX127X_FREQ_LF_MAX 525000000 // per datasheet 6.3
// per datasheet 5.5.3 and 5.5.5:
#define SX1272_RSSI_ADJUST -139 // add to rssi value to get dB (LF)
// per datasheet 5.5.3 and 5.5.5:
#define SX1276_RSSI_ADJUST_LF -164 // add to rssi value to get dB (LF)
#define SX1276_RSSI_ADJUST_HF -157 // add to rssi value to get dB (HF)
#ifdef CFG_sx1276_radio
# define SX127X_RSSI_ADJUST_LF SX1276_RSSI_ADJUST_LF
# define SX127X_RSSI_ADJUST_HF SX1276_RSSI_ADJUST_HF
#else
# define SX127X_RSSI_ADJUST_LF SX1272_RSSI_ADJUST
# define SX127X_RSSI_ADJUST_HF SX1272_RSSI_ADJUST
#endif
// per datasheet 2.5.2 (but note that we ought to ask Semtech to confirm, because
// datasheet is unclear).
#define SX127X_RX_POWER_UP us2osticks(500) // delay this long to let the receiver power up.
// ----------------------------------------
// Constants for radio registers
#define OPMODE_LORA 0x80
#define OPMODE_MASK 0x07
#define OPMODE_SLEEP 0x00
#define OPMODE_STANDBY 0x01
#define OPMODE_FSTX 0x02
#define OPMODE_TX 0x03
#define OPMODE_FSRX 0x04
#define OPMODE_RX 0x05
#define OPMODE_RX_SINGLE 0x06
#define OPMODE_CAD 0x07
// ----------------------------------------
// FSK opmode bits
// bits 6:5 are the same for 1272 and 1276
#define OPMODE_FSK_SX127x_ModulationType_FSK (0u << 5)
#define OPMODE_FSK_SX127x_ModulationType_OOK (1u << 5)
#define OPMODE_FSK_SX127x_ModulationType_MASK (3u << 5)
// bits 4:3 are different for 1272
#define OPMODE_FSK_SX1272_ModulationShaping_FSK_None (0u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_FSK_BT1_0 (1u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_FSK_BT0_5 (2u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_FSK_BT0_3 (3u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_OOK_None (0u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_OOK_BR (1u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_OOK_2BR (2u << 3)
#define OPMODE_FSK_SX1272_ModulationShaping_MASK (3u << 3)
// SX1276
#define OPMODE_FSK_SX1276_LowFrequencyModeOn (1u << 3)
// define the opmode bits apporpriate for the 127x in use.
#if defined(CFG_sx1272_radio)
# define OPMODE_FSK_SX127X_SETUP (OPMODE_FSK_SX127x_ModulationType_FSK | \
OPMODE_FSK_SX1272_ModulationShaping_FSK_BT0_5)
#elif defined(CFG_sx1276_radio)
# define OPMODE_FSK_SX127X_SETUP (OPMODE_FSK_SX127x_ModulationType_FSK)
#endif
// ----------------------------------------
// LoRa opmode bits
#define OPMODE_LORA_SX127x_AccessSharedReg (1u << 6)
#define OPMODE_LORA_SX1276_LowFrequencyModeOn (1u << 3)
// ----------------------------------------
// Bits masking the corresponding IRQs from the radio
#define IRQ_LORA_RXTOUT_MASK 0x80
#define IRQ_LORA_RXDONE_MASK 0x40
#define IRQ_LORA_CRCERR_MASK 0x20
#define IRQ_LORA_HEADER_MASK 0x10
#define IRQ_LORA_TXDONE_MASK 0x08
#define IRQ_LORA_CDDONE_MASK 0x04
#define IRQ_LORA_FHSSCH_MASK 0x02
#define IRQ_LORA_CDDETD_MASK 0x01
#define IRQ_FSK1_MODEREADY_MASK 0x80
#define IRQ_FSK1_RXREADY_MASK 0x40
#define IRQ_FSK1_TXREADY_MASK 0x20
#define IRQ_FSK1_PLLLOCK_MASK 0x10
#define IRQ_FSK1_RSSI_MASK 0x08
#define IRQ_FSK1_TIMEOUT_MASK 0x04
#define IRQ_FSK1_PREAMBLEDETECT_MASK 0x02
#define IRQ_FSK1_SYNCADDRESSMATCH_MASK 0x01
#define IRQ_FSK2_FIFOFULL_MASK 0x80
#define IRQ_FSK2_FIFOEMPTY_MASK 0x40
#define IRQ_FSK2_FIFOLEVEL_MASK 0x20
#define IRQ_FSK2_FIFOOVERRUN_MASK 0x10
#define IRQ_FSK2_PACKETSENT_MASK 0x08
#define IRQ_FSK2_PAYLOADREADY_MASK 0x04
#define IRQ_FSK2_CRCOK_MASK 0x02
#define IRQ_FSK2_LOWBAT_MASK 0x01
// ----------------------------------------
// DIO function mappings D0D1D2D3
#define MAP_DIO0_LORA_RXDONE 0x00 // 00------
#define MAP_DIO0_LORA_TXDONE 0x40 // 01------
#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
#define MAP_DIO1_LORA_NOP 0x30 // --11----
#define MAP_DIO2_LORA_NOP 0x0C // ----11--
#define MAP_DIO0_FSK_READY 0x00 // 00------ (packet sent / payload ready)
#define MAP_DIO1_FSK_NOP 0x30 // --11----
#define MAP_DIO2_FSK_TXNOP 0x04 // ----01--
#define MAP_DIO2_FSK_TIMEOUT 0x08 // ----10--
// FSK IMAGECAL defines
#define RF_IMAGECAL_AUTOIMAGECAL_MASK 0x7F
#define RF_IMAGECAL_AUTOIMAGECAL_ON 0x80
#define RF_IMAGECAL_AUTOIMAGECAL_OFF 0x00 // Default
#define RF_IMAGECAL_IMAGECAL_MASK 0xBF
#define RF_IMAGECAL_IMAGECAL_START 0x40
#define RF_IMAGECAL_IMAGECAL_RUNNING 0x20
#define RF_IMAGECAL_IMAGECAL_DONE 0x00 // Default
// LNA gain constant. Bits 4..0 have different meaning for 1272 and 1276, but
// by chance, the bit patterns we use are the same.
#ifdef CFG_sx1276_radio
#define LNA_RX_GAIN (0x20|0x3)
#elif CFG_sx1272_radio
#define LNA_RX_GAIN (0x20|0x03)
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif
// RADIO STATE
// (initialized by radio_init(), used by radio_rand1())
static u1_t randbuf[16];
static void writeReg (u1_t addr, u1_t data ) {
hal_spi_write(addr | 0x80, &data, 1);
}
static u1_t readReg (u1_t addr) {
u1_t buf[1];
hal_spi_read(addr & 0x7f, buf, 1);
return buf[0];
}
static void writeBuf (u1_t addr, xref2u1_t buf, u1_t len) {
hal_spi_write(addr | 0x80, buf, len);
}
static void readBuf (u1_t addr, xref2u1_t buf, u1_t len) {
hal_spi_read(addr & 0x7f, buf, len);
}
static void requestModuleActive(bit_t state) {
ostime_t const ticks = hal_setModuleActive(state);
if (ticks)
hal_waitUntil(os_getTime() + ticks);;
}
static void writeOpmode(u1_t mode) {
u1_t const maskedMode = mode & OPMODE_MASK;
if (maskedMode != OPMODE_SLEEP)
requestModuleActive(1);
writeReg(RegOpMode, mode);
if (maskedMode == OPMODE_SLEEP)
requestModuleActive(0);
}
static void opmode (u1_t mode) {
writeOpmode((readReg(RegOpMode) & ~OPMODE_MASK) | mode);
}
static void opmodeLora() {
u1_t u = OPMODE_LORA;
#ifdef CFG_sx1276_radio
if (LMIC.freq <= SX127X_FREQ_LF_MAX) {
u |= OPMODE_FSK_SX1276_LowFrequencyModeOn;
}
#endif
writeOpmode(u);
}
static void opmodeFSK() {
u1_t u = OPMODE_FSK_SX127X_SETUP;
#ifdef CFG_sx1276_radio
if (LMIC.freq <= SX127X_FREQ_LF_MAX) {
u |= OPMODE_FSK_SX1276_LowFrequencyModeOn;
}
#endif
writeOpmode(u);
}
// configure LoRa modem (cfg1, cfg2)
static void configLoraModem () {
sf_t sf = getSf(LMIC.rps);
#ifdef CFG_sx1276_radio
u1_t mc1 = 0, mc2 = 0, mc3 = 0;
bw_t const bw = getBw(LMIC.rps);
switch (bw) {
case BW125: mc1 |= SX1276_MC1_BW_125; break;
case BW250: mc1 |= SX1276_MC1_BW_250; break;
case BW500: mc1 |= SX1276_MC1_BW_500; break;
default:
ASSERT(0);
}
switch( getCr(LMIC.rps) ) {
case CR_4_5: mc1 |= SX1276_MC1_CR_4_5; break;
case CR_4_6: mc1 |= SX1276_MC1_CR_4_6; break;
case CR_4_7: mc1 |= SX1276_MC1_CR_4_7; break;
case CR_4_8: mc1 |= SX1276_MC1_CR_4_8; break;
default:
ASSERT(0);
}
if (getIh(LMIC.rps)) {
mc1 |= SX1276_MC1_IMPLICIT_HEADER_MODE_ON;
writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
}
// set ModemConfig1
writeReg(LORARegModemConfig1, mc1);
mc2 = (SX1272_MC2_SF7 + ((sf-1)<<4) + ((LMIC.rxsyms >> 8) & 0x3) );
if (getNocrc(LMIC.rps) == 0) {
mc2 |= SX1276_MC2_RX_PAYLOAD_CRCON;
}
#if CFG_TxContinuousMode
// Only for testing
// set ModemConfig2 (sf, TxContinuousMode=1, AgcAutoOn=1 SymbTimeoutHi=00)
mc2 |= 0x8;
#endif
writeReg(LORARegModemConfig2, mc2);
mc3 = SX1276_MC3_AGCAUTO;
if ( ((sf == SF11 || sf == SF12) && bw == BW125) ||
((sf == SF12) && bw == BW250) ) {
mc3 |= SX1276_MC3_LOW_DATA_RATE_OPTIMIZE;
}
writeReg(LORARegModemConfig3, mc3);
// Errata 2.1: Sensitivity optimization with 500 kHz bandwidth
u1_t rHighBwOptimize1;
u1_t rHighBwOptimize2;
rHighBwOptimize1 = 0x03;
rHighBwOptimize2 = 0;
if (bw == BW500) {
if (LMIC.freq > SX127X_FREQ_LF_MAX) {
rHighBwOptimize1 = 0x02;
rHighBwOptimize2 = 0x64;
} else {
rHighBwOptimize1 = 0x02;
rHighBwOptimize2 = 0x7F;
}
}
writeReg(LORARegHighBwOptimize1, rHighBwOptimize1);
if (rHighBwOptimize2 != 0)
writeReg(LORARegHighBwOptimize2, rHighBwOptimize2);
#elif CFG_sx1272_radio
u1_t mc1 = (getBw(LMIC.rps)<<6);
switch( getCr(LMIC.rps) ) {
case CR_4_5: mc1 |= SX1272_MC1_CR_4_5; break;
case CR_4_6: mc1 |= SX1272_MC1_CR_4_6; break;
case CR_4_7: mc1 |= SX1272_MC1_CR_4_7; break;
case CR_4_8: mc1 |= SX1272_MC1_CR_4_8; break;
}
if ((sf == SF11 || sf == SF12) && getBw(LMIC.rps) == BW125) {
mc1 |= SX1272_MC1_LOW_DATA_RATE_OPTIMIZE;
}
if (getNocrc(LMIC.rps) == 0) {
mc1 |= SX1272_MC1_RX_PAYLOAD_CRCON;
}
if (getIh(LMIC.rps)) {
mc1 |= SX1272_MC1_IMPLICIT_HEADER_MODE_ON;
writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
}
// set ModemConfig1
writeReg(LORARegModemConfig1, mc1);
// set ModemConfig2 (sf, AgcAutoOn=1 SymbTimeoutHi)
u1_t mc2;
mc2 = (SX1272_MC2_SF7 + ((sf-1)<<4)) | 0x04 | ((LMIC.rxsyms >> 8) & 0x3);
#if CFG_TxContinuousMode
// Only for testing
// set ModemConfig2 (sf, TxContinuousMode=1, AgcAutoOn=1 SymbTimeoutHi=00)
mc2 |= 0x8;
#endif
writeReg(LORARegModemConfig2, mc2);
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif /* CFG_sx1272_radio */
}
static void configChannel () {
// set frequency: FQ = (FRF * 32 Mhz) / (2 ^ 19)
uint64_t frf = ((uint64_t)LMIC.freq << 19) / 32000000;
writeReg(RegFrfMsb, (u1_t)(frf>>16));
writeReg(RegFrfMid, (u1_t)(frf>> 8));
writeReg(RegFrfLsb, (u1_t)(frf>> 0));
}
// On the SX1276, we have several possible configs.
// 1) using RFO, MaxPower==0: in that case power is -4 to 11 dBm
// 2) using RFO, MaxPower==7: in that case, power is 0 to 14 dBm
// (can't select 15 dBm).
// note we can use -4..11 w/o Max and then 12..14 w/Max, and
// we really don't need to ask anybody.
// 3) using PA_BOOST, PaDac = 4: in that case power range is 2 to 17 dBm;
// use this for 15..17 if authorized.
// 4) using PA_BOOST, PaDac = 7, OutputPower=0xF: in that case, power is 20 dBm
// (and perhaps 0xE is 19, 0xD is 18 dBm, but datasheet isn't clear.)
// and duty cycle must be <= 1%.
//
// In addition, there are some boards for which PA_BOOST can only be used if the
// channel frequency is greater than SX127X_FREQ_LF_MAX.
//
// The SX1272 is similar but has no MaxPower bit:
// 1) using RFO: power is -1 to 13 dBm (datasheet implies max OutputPower value is 14 for 13 dBm)
// 2) using PA_BOOST, PaDac = 0x84: power is 2 to 17 dBm;
// use this for 14..17 if authorized
// 3) using PA_BOOST, PaDac = 0x87, OutputPower = 0xF: power is 20dBm
// and duty cycle must be <= 1%
//
// The general policy is to use the lowest power variant that will get us where we
// need to be.
//
static void configPower () {
// our input paramter -- might be different than LMIC.txpow!
s1_t const req_pw = (s1_t)LMIC.radio_txpow;
// the effective power
s1_t eff_pw;
// the policy; we're going to compute this.
u1_t policy;
// what we'll write to RegPaConfig
u1_t rPaConfig;
// what we'll write to RegPaDac
u1_t rPaDac;
// what we'll write to RegOcp
u1_t rOcp;
#ifdef CFG_sx1276_radio
if (req_pw >= 20) {
policy = LMICHAL_radio_tx_power_policy_20dBm;
eff_pw = 20;
} else if (req_pw >= 14) {
policy = LMICHAL_radio_tx_power_policy_paboost;
if (req_pw > 17) {
eff_pw = 17;
} else {
eff_pw = req_pw;
}
} else {
policy = LMICHAL_radio_tx_power_policy_rfo;
if (req_pw < -4) {
eff_pw = -4;
} else {
eff_pw = req_pw;
}
}
policy = hal_getTxPowerPolicy(policy, eff_pw, LMIC.freq);
switch (policy) {
default:
case LMICHAL_radio_tx_power_policy_rfo:
rPaDac = SX127X_PADAC_POWER_NORMAL;
rOcp = SX127X_OCP_MAtoBITS(80);
if (eff_pw > 14)
eff_pw = 14;
if (eff_pw > 11) {
// some Semtech code uses this down to eff_pw == 0.
rPaConfig = eff_pw | SX1276_PAC_MAX_POWER_MASK;
} else {
if (eff_pw < -4)
eff_pw = -4;
rPaConfig = eff_pw + 4;
}
break;
// some radios (HopeRF RFM95W) don't support RFO well,
// so the policy might *raise* rfo to paboost. That means
// we have to re-check eff_pw, which might be too small.
// (And, of course, it might also be too large.)
case LMICHAL_radio_tx_power_policy_paboost:
// It seems that SX127x doesn't like eff_pw 10 when in FSK mode.
if (getSf(LMIC.rps) == FSK && eff_pw < 11) {
eff_pw = 11;
}
rPaDac = SX127X_PADAC_POWER_NORMAL;
rOcp = SX127X_OCP_MAtoBITS(100);
if (eff_pw > 17)
eff_pw = 17;
else if (eff_pw < 2)
eff_pw = 2;
rPaConfig = (eff_pw - 2) | SX1276_PAC_PA_SELECT_PA_BOOST;
break;
case LMICHAL_radio_tx_power_policy_20dBm:
rPaDac = SX127X_PADAC_POWER_20dBm;
rOcp = SX127X_OCP_MAtoBITS(130);
rPaConfig = 0xF | SX1276_PAC_PA_SELECT_PA_BOOST;
break;
}
#elif CFG_sx1272_radio
if (req_pw >= 20) {
policy = LMICHAL_radio_tx_power_policy_20dBm;
eff_pw = 20;
} else if (eff_pw >= 14) {
policy = LMICHAL_radio_tx_power_policy_paboost;
if (eff_pw > 17) {
eff_pw = 17;
} else {
eff_pw = req_pw;
}
} else {
policy = LMICHAL_radio_tx_power_policy_rfo;
if (req_pw < -1) {
eff_pw = -1;
} else {
eff_pw = req_pw;
}
}
policy = hal_getTxPowerPolicy(policy, eff_pw, LMIC.freq);
switch (policy) {
default:
case LMICHAL_radio_tx_power_policy_rfo:
rPaDac = SX127X_PADAC_POWER_NORMAL;
rOcp = SX127X_OCP_MAtoBITS(50);
if (eff_pw > 13)
eff_pw = 13;
rPaConfig = eff_pw + 1;
break;
case LMICHAL_radio_tx_power_policy_paboost:
rPaDac = SX127X_PADAC_POWER_NORMAL;
rOcp = SX127X_OCP_MAtoBITS(100);
if (eff_pw > 17)
eff_pw = 17;
rPaConfig = (eff_pw - 2) | SX1272_PAC_PA_SELECT_PA_BOOST;
break;
case LMICHAL_radio_tx_power_policy_20dBm:
rPaDac = SX127X_PADAC_POWER_20dBm;
rOcp = SX127X_OCP_MAtoBITS(130);
rPaConfig = 0xF | SX1276_PAC_PA_SELECT_PA_BOOST;
break;
}
#else
#error Missing CFG_sx1272_radio/CFG_sx1276_radio
#endif /* CFG_sx1272_radio */
writeReg(RegPaConfig, rPaConfig);
writeReg(RegPaDac, (readReg(RegPaDac) & ~SX127X_PADAC_POWER_MASK) | rPaDac);
writeReg(RegOcp, rOcp | SX127X_OCP_ENA);
}
static void setupFskRxTx(bit_t fDisableAutoClear) {
// set bitrate
writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
writeReg(FSKRegBitrateLsb, 0x80);
// set frequency deviation
writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
writeReg(FSKRegFdevLsb, 0x99);
// set sync config
writeReg(FSKRegSyncConfig, 0x12); // no auto restart, preamble 0xAA, enable, fill FIFO, 3 bytes sync
// set packet config
writeReg(FSKRegPacketConfig1, fDisableAutoClear ? 0xD8 : 0xD0); // var-length, whitening, crc, no auto-clear, no adr filter
writeReg(FSKRegPacketConfig2, 0x40); // packet mode
// set sync value
writeReg(FSKRegSyncValue1, 0xC1);
writeReg(FSKRegSyncValue2, 0x94);
writeReg(FSKRegSyncValue3, 0xC1);
}
static void txfsk () {
// select FSK modem (from sleep mode)
opmodeFSK();
// enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);
// set bitrate etc
setupFskRxTx(/* don't autoclear CRC */ 0);
// frame and packet handler settings
writeReg(FSKRegPreambleMsb, 0x00);
writeReg(FSKRegPreambleLsb, 0x05);
// configure frequency
configChannel();
// configure output power
configPower();
#ifdef CFG_sx1276_radio
// select Gausian filter BT=0.5, default ramp.
writeReg(RegPaRamp, 0x29);
#endif
// set the IRQ mapping DIO0=PacketSent DIO1=NOP DIO2=NOP
writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TXNOP);
// initialize the payload size and address pointers
// TODO([email protected]): datasheet says this is not used in variable packet length mode
writeReg(FSKRegPayloadLength, LMIC.dataLen+1); // (insert length byte into payload))
// download length byte and buffer to the radio FIFO
writeReg(RegFifo, LMIC.dataLen);
writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
// enable antenna switch for TX
hal_pin_rxtx(1);
// now we actually start the transmission
if (LMIC.txend) {
u4_t nLate = hal_waitUntil(LMIC.txend); // busy wait until exact tx time
if (nLate > 0) {
LMIC.radio.txlate_ticks += nLate;
++LMIC.radio.txlate_count;
}
}
LMICOS_logEventUint32("+Tx FSK", LMIC.dataLen);
opmode(OPMODE_TX);
}
static void txlora () {
// select LoRa modem (from sleep mode)
//writeReg(RegOpMode, OPMODE_LORA);
opmodeLora();
ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
// enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);
// configure LoRa modem (cfg1, cfg2)
configLoraModem();
// configure frequency
configChannel();
// configure output power
#ifdef CFG_sx1272_radio
writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA ramp-up time 50 uSec
#elif defined(CFG_sx1276_radio)
writeReg(RegPaRamp, 0x08); // set PA ramp-up time 50 uSec, clear FSK bits
#endif
configPower();
// set sync word
writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
// set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP
writeReg(RegDioMapping1, MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LORA_NOP);
// clear all radio IRQ flags
writeReg(LORARegIrqFlags, 0xFF);
// mask all IRQs but TxDone
writeReg(LORARegIrqFlagsMask, ~IRQ_LORA_TXDONE_MASK);
// initialize the payload size and address pointers
writeReg(LORARegFifoTxBaseAddr, 0x00);
writeReg(LORARegFifoAddrPtr, 0x00);
writeReg(LORARegPayloadLength, LMIC.dataLen);
// download buffer to the radio FIFO
writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
// enable antenna switch for TX
hal_pin_rxtx(1);
// now we actually start the transmission
if (LMIC.txend) {
u4_t nLate = hal_waitUntil(LMIC.txend); // busy wait until exact tx time
if (nLate) {
LMIC.radio.txlate_ticks += nLate;
++LMIC.radio.txlate_count;
}
}
LMICOS_logEventUint32("+Tx LoRa", LMIC.dataLen);
opmode(OPMODE_TX);
#if LMIC_DEBUG_LEVEL > 0
u1_t sf = getSf(LMIC.rps) + 6; // 1 == SF7
u1_t bw = getBw(LMIC.rps);
u1_t cr = getCr(LMIC.rps);
LMIC_DEBUG_PRINTF("%"LMIC_PRId_ostime_t": TXMODE, freq=%"PRIu32", len=%d, SF=%d, BW=%d, CR=4/%d, IH=%d\n",
os_getTime(), LMIC.freq, LMIC.dataLen, sf,
bw == BW125 ? 125 : (bw == BW250 ? 250 : 500),
cr == CR_4_5 ? 5 : (cr == CR_4_6 ? 6 : (cr == CR_4_7 ? 7 : 8)),
getIh(LMIC.rps)
);
#endif
}
// start transmitter (buf=LMIC.frame, len=LMIC.dataLen)
static void starttx () {
u1_t const rOpMode = readReg(RegOpMode);
// originally, this code ASSERT()ed, but asserts are both bad and
// blunt instruments. If we see that we're not in sleep mode,
// force sleep (because we might have to switch modes)
if ((rOpMode & OPMODE_MASK) != OPMODE_SLEEP) {
#if LMIC_DEBUG_LEVEL > 0
LMIC_DEBUG_PRINTF("?%s: OPMODE != OPMODE_SLEEP: %#02x\n", __func__, rOpMode);
#endif
opmode(OPMODE_SLEEP);
hal_waitUntil(os_getTime() + ms2osticks(1));
}
if (LMIC.lbt_ticks > 0) {
oslmic_radio_rssi_t rssi;
radio_monitor_rssi(LMIC.lbt_ticks, &rssi);
#if LMIC_X_DEBUG_LEVEL > 0
LMIC_X_DEBUG_PRINTF("LBT rssi max:min=%d:%d %d times in %d\n", rssi.max_rssi, rssi.min_rssi, rssi.n_rssi, LMIC.lbt_ticks);
#endif
if (rssi.max_rssi >= LMIC.lbt_dbmax) {
// complete the request by scheduling the job
os_setCallback(&LMIC.osjob, LMIC.osjob.func);
return;
}
}
if(getSf(LMIC.rps) == FSK) { // FSK modem
txfsk();
} else { // LoRa modem
txlora();
}
// the radio will go back to STANDBY mode as soon as the TX is finished
// the corresponding IRQ will inform us about completion.
}
enum { RXMODE_SINGLE, RXMODE_SCAN, RXMODE_RSSI };
static CONST_TABLE(u1_t, rxlorairqmask)[] = {
[RXMODE_SINGLE] = IRQ_LORA_RXDONE_MASK|IRQ_LORA_RXTOUT_MASK,
[RXMODE_SCAN] = IRQ_LORA_RXDONE_MASK,
[RXMODE_RSSI] = 0x00,
};
//! \brief handle late RX events.
//! \param nLate is the number of `ostime_t` ticks that the event was late.
//! \details If nLate is non-zero, increment the count of events, totalize
//! the number of ticks late, and (if implemented) adjust the estimate of
//! what would be best to return from `os_getRadioRxRampup()`.
static void rxlate (u4_t nLate) {
if (nLate) {
LMIC.radio.rxlate_ticks += nLate;
++LMIC.radio.rxlate_count;
}
}
// start LoRa receiver (time=LMIC.rxtime, timeout=LMIC.rxsyms, result=LMIC.frame[LMIC.dataLen])
static void rxlora (u1_t rxmode) {
// select LoRa modem (from sleep mode)
opmodeLora();
ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
// enter standby mode (warm up))
opmode(OPMODE_STANDBY);
// don't use MAC settings at startup
if(rxmode == RXMODE_RSSI) { // use fixed settings for rssi scan
writeReg(LORARegModemConfig1, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1);
writeReg(LORARegModemConfig2, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2);
} else { // single or continuous rx mode
// configure LoRa modem (cfg1, cfg2)
configLoraModem();
// configure frequency
configChannel();
}
// set LNA gain
writeReg(RegLna, LNA_RX_GAIN);
// set max payload size
writeReg(LORARegPayloadMaxLength, MAX_LEN_FRAME);
#if !defined(DISABLE_INVERT_IQ_ON_RX) /* DEPRECATED([email protected]); #250. remove test, always include code in V3 */
// use inverted I/Q signal (prevent mote-to-mote communication)
// XXX: use flag to switch on/off inversion
if (LMIC.noRXIQinversion) {
writeReg(LORARegInvertIQ, readReg(LORARegInvertIQ) & ~(1<<6));
} else {
writeReg(LORARegInvertIQ, readReg(LORARegInvertIQ)|(1<<6));
}
#endif
// Errata 2.3 - receiver spurious reception of a LoRa signal
bw_t const bw = getBw(LMIC.rps);
u1_t const rDetectOptimize = (readReg(LORARegDetectOptimize) & 0x78) | 0x03;
if (bw < BW500) {
writeReg(LORARegDetectOptimize, rDetectOptimize);
writeReg(LORARegIffReq1, 0x40);
writeReg(LORARegIffReq2, 0x40);
} else {
writeReg(LORARegDetectOptimize, rDetectOptimize | 0x80);
}
// set symbol timeout (for single rx)
writeReg(LORARegSymbTimeoutLsb, (uint8_t) LMIC.rxsyms);
// set sync word
writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
// configure DIO mapping DIO0=RxDone DIO1=RxTout DIO2=NOP
writeReg(RegDioMapping1, MAP_DIO0_LORA_RXDONE|MAP_DIO1_LORA_RXTOUT|MAP_DIO2_LORA_NOP);
// clear all radio IRQ flags
writeReg(LORARegIrqFlags, 0xFF);
// enable required radio IRQs
writeReg(LORARegIrqFlagsMask, ~TABLE_GET_U1(rxlorairqmask, rxmode));
// enable antenna switch for RX
hal_pin_rxtx(0);
writeReg(LORARegFifoAddrPtr, 0);
writeReg(LORARegFifoRxBaseAddr, 0);
// now instruct the radio to receive
if (rxmode == RXMODE_SINGLE) { // single rx
u4_t nLate = hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
opmode(OPMODE_RX_SINGLE);
LMICOS_logEventUint32("+Rx LoRa Single", nLate);
rxlate(nLate);
#if LMIC_DEBUG_LEVEL > 0
ostime_t now = os_getTime();
LMIC_DEBUG_PRINTF("start single rx: now-rxtime: %"LMIC_PRId_ostime_t"\n", now - LMIC.rxtime);
#endif
} else { // continous rx (scan or rssi)
LMICOS_logEventUint32("+Rx LoRa Continuous", rxmode);
opmode(OPMODE_RX);
}
#if LMIC_DEBUG_LEVEL > 0
if (rxmode == RXMODE_RSSI) {
LMIC_DEBUG_PRINTF("RXMODE_RSSI\n");
} else {
u1_t sf = getSf(LMIC.rps) + 6; // 1 == SF7
u1_t bw = getBw(LMIC.rps);