Skip to content

Latest commit

 

History

History
156 lines (103 loc) · 5.74 KB

README.md

File metadata and controls

156 lines (103 loc) · 5.74 KB

NAME

tesseract-recognize - A tool that does layout analysis and/or text recognition using tesseract and outputs the result in Page XML format.

Docker Automated build

Requirements (Ubuntu 18.04 & 20.04 & 22.04)

Build

  • make
  • cmake
  • g++
  • libtesseract-dev
  • libgs-dev
  • libxslt1-dev

Runtime

  • tesseract-ocr
  • ghostscript
  • libxslt1.1

Installation and usage

To compile from source follow the instructions here. If you only want the tool it might be simpler to use docker as explained in the next section.

git clone --recursive https://github.com/mauvilsa/tesseract-recognize
mkdir tesseract-recognize/build
cd tesseract-recognize/build
cmake -DCMAKE_INSTALL_PREFIX:PATH=$HOME ..
make install

tesseract-recognize --help
tesseract-recognize IMAGE1 IMAGE2 -o OUTPUT.xml
tesseract-recognize INPUT.xml -o OUTPUT.xml

Installation and usage (docker)

The latest docker images are based on Ubuntu 22.04 and use the version of tesseract from the default package repositories (see the respective docker hub page).

To install first pull the docker image of your choosing, using a command such as:

TAG="SELECTED_TAG_HERE"
docker pull mauvilsa/tesseract-recognize:$TAG

The basic docker image only includes language files for recognition of English, so for additional languages you need to provide to the docker container the corresponding tessdata files. There is also an additional docker image that can be used to create a volume that includes all languages from the tesseract-ocr-* ubuntu packages. To create this volume run the following:

docker pull mauvilsa/tesseract-recognize-langs:ubuntu22.04-pkg
docker run \
  --rm \
  --mount source=tesseract-ocr-tessdata,destination=/usr/share/tesseract-ocr/4.00/tessdata \
  -it mauvilsa/tesseract-recognize-langs:ubuntu22.04-pkg

Then there are two possible ways of using the tesseract-recognize docker image, through a command line interface or through a REST API, as explained in the next two sections.

Command line interface

First download the https://github.com/omni-us/docker-command-line-interface, put it in some directory in your path and make it executable, for example:

wget -O $HOME/.local/bin https://raw.githubusercontent.com/omni-us/docker-command-line-interface/master/docker-cli
chmod +x $HOME/.local/bin/docker-cli

As an additional step, you could look at docker-cli --help and read about how to configure bash completion.

After installing docker-cli, the tesseract-recognize tool can be used like any other command, i.e.

docker-cli \
  --ipc=host \
  -- mauvilsa/tesseract-recognize:$TAG \
  tesseract-recognize IMAGE -o OUTPUT.xml

To recognize other languages using the tessdata volume mentioned previously can be done as follows

docker-cli \
  --ipc=host \
  --mount source=tesseract-ocr-tessdata,destination=/usr/share/tesseract-ocr/4.00/tessdata \
  -- mauvilsa/tesseract-recognize:$TAG \
  tesseract-recognize IMAGE -o OUTPUT.xml

For convenience you could setup an alias, i.e.

alias tesseract-recognize-docker="docker-cli --ipc=host --mount source=tesseract-ocr-tessdata,destination=/usr/share/tesseract-ocr/4.00/tessdata -- mauvilsa/tesseract-recognize:$TAG tesseract-recognize"
tesseract-recognize-docker --help

API interface

The API interface uses a python flask sever that can be accessed through port 5000 inside the docker container. For example the server could be started as:

docker run --rm -t -p 5000:5000 mauvilsa/tesseract-recognize:$TAG 

The API exposes the following endpoints:

Method Endpoint Description Parameters (form fields)
GET /tesseract-recognize/version Returns tool version information -
GET /tesseract-recognize/help Returns tool help -
GET /tesseract-recognize/swagger.json The swagger json -
POST /tesseract-recognize/process Recognize given images or xml images (array, required): Image files with names as in page xml. pagexml (optional): Page xml file to recognize. options (optional): Array of strings with options for the tesseract-recognize tool.

For illustration purposes the curl command can be used. Processing an input image with a non-default layout level would be using a POST such as

curl -o output.xml -F [email protected] -F options='["--layout", "word"]' http://localhost:5000/tesseract-recognize/process

To process a page xml file, both the xml and the respective images should be included in the request, that is for example

curl -o output.xml -F [email protected] -F [email protected] -F pagexml=input.xml http://localhost:5000/tesseract-recognize/process

The API is implemented using Flask-RESTPlus which allows that once the server is started, you can use a browser to get a more detailed view of the exposed endpoints by going to http://localhost:5000/tesseract-recognize/swagger.

Viewing results

The results can be viewed/edited using the Page XML editor available at https://github.com/mauvilsa/nw-page-editor or using other tools that support this format such as http://www.primaresearch.org/tools and https://transkribus.eu/Transkribus/ .

Contributing

If you intend to contribute, before any commits be sure to first execute githook-pre-commit to setup (symlink) the pre-commit hook. This hook takes care of automatically updating the tool version.

Copyright

The MIT License (MIT)

Copyright (c) 2015-present, Mauricio Villegas [email protected]