-
Notifications
You must be signed in to change notification settings - Fork 38
/
demo.py
189 lines (155 loc) · 6.87 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from PIL import Image
# from minigpt4.common.config import Config
from util.misc import get_rank
# from minigpt4.common.registry import registry
from conversation.conversation import Chat, CONV_VISION
from torchvision.transforms import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from eval import load
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from typing import Tuple
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--server_name", type=str, default="127.0.0.1", help="server name")
parser.add_argument("--ckpt_dir", type=str, default="../data/weights/", help="dir of pre-trained weights.")
parser.add_argument("--llm_model", type=str, default="13B", help="the type of llm.")
parser.add_argument("--max_seq_len", type=int, default=512, help="decoder length")
parser.add_argument('--adapter_type', type=str, default='attn', metavar='LENGTH',choices=['block','attn'],
help='the insert position of adapter layer')
parser.add_argument('--adapter_path', type=str, default='./15-eph-pretrain.pth', help='path of pre-trained adapter')
parser.add_argument('--temperature', type=float, default=5., metavar='LENGTH',
help='the temperature of router')
parser.add_argument('--use_vicuna', action='store_true', help='use vicuna weights')
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
local_rank, world_size = setup_model_parallel()
lavin=load(
ckpt_dir=args.ckpt_dir,
llm_model=args.llm_model,
adapter_path=args.adapter_path,
max_seq_len=512,
max_batch_size=4,
adapter_type='attn',
adapter_dim=8,
adapter_scale=1,
hidden_proj=128,
visual_adapter_type='router',
temperature=args.temperature,
tokenizer_path='',
local_rank=local_rank,
world_size=world_size,
use_vicuna=args.use_vicuna
)
vis_processor = transforms.Compose([transforms.Resize((224, 224), interpolation=Image.BICUBIC),transforms.ToTensor(), transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)])
chat = Chat(lavin, vis_processor, device=torch.device('cuda'))
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Type and press Enter',
interactive=True), gr.update(
value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
chat_state = CONV_VISION.copy()
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
if chat_state is None:
chat_state=CONV_VISION.copy()
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)
chatbot[-1][1] = llm_message
return chatbot, chat_state, img_list
title = """<h1 align="center">Demo of LaVIN</h1>"""
description = """<h3>This is the demo of LaVIN. Upload your images and start chatting!</h3>"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='LaVIN-13B')
text_input = gr.Textbox(label='User', placeholder='Type and press Enter', interactive=True)
upload_button.click(upload_img, [image, text_input, chat_state],
[image, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
queue=False)
demo.launch(share=True, enable_queue=True,server_name=args.server_name)