-
Notifications
You must be signed in to change notification settings - Fork 80
/
show_result.py
263 lines (227 loc) · 12.3 KB
/
show_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import pandas as pd
import numpy as np
import datetime
import argparse
import os
from glob import glob
from tqdm import tqdm
from utils import load_model_answers
from utils_math import (
compute_mle_elo,
get_bootstrap_result,
get_win_rate_column,
fit_bt,
construct_style_matrices,
get_bootstrap_result_style_control,
STYLE_CONTROL_ELEMENTS,
LENGTH_CONTROL_ELEMENTS,
MARKDOWN_CONTROL_ELEMENTS,
)
def get_battles_from_row(row, first_game_only, multiplier, baseline_model, metadata=None):
results = []
output = {"question_id": row["question_id"],
"model_a": baseline_model,
"model_b": row["model"]}
game = row["games"][0]
weight = 1
if game["score"] == "A=B":
output["winner"] = "tie"
elif game["score"] == "A>B":
output["winner"] = "model_a"
elif game["score"] == "A>>B":
output["winner"] = "model_a"
weight = multiplier
elif game["score"] == "B>A":
output["winner"] = "model_b"
elif game["score"] == "B>>A":
output["winner"] = "model_b"
weight = multiplier
else:
weight = 0
# add conv_metadata for style control
if metadata:
output["conv_metadata"] = {
"sum_assistant_a_tokens": metadata[baseline_model][row["question_id"]]["conv_metadata"]["token_len"],
"sum_assistant_b_tokens": metadata[row["model"]][row["question_id"]]["conv_metadata"]["token_len"],
"header_count_a": metadata[baseline_model][row["question_id"]]["conv_metadata"]["header_count"],
"header_count_b": metadata[row["model"]][row["question_id"]]["conv_metadata"]["header_count"],
"list_count_a": metadata[baseline_model][row["question_id"]]["conv_metadata"]["list_count"],
"list_count_b": metadata[row["model"]][row["question_id"]]["conv_metadata"]["list_count"],
"bold_count_a": metadata[baseline_model][row["question_id"]]["conv_metadata"]["bold_count"],
"bold_count_b": metadata[row["model"]][row["question_id"]]["conv_metadata"]["bold_count"],
}
if weight:
results += [output] * weight
if first_game_only:
return results
# game 2
output = {"question_id": row["question_id"],
"model_a": baseline_model,
"model_b": row["model"]}
game = row["games"][1]
weight = 1
if game["score"] == "A=B":
output["winner"] = "tie"
elif game["score"] == "A>B":
output["winner"] = "model_b"
elif game["score"] == "A>>B":
output["winner"] = "model_b"
weight = multiplier
elif game["score"] == "B>A":
output["winner"] = "model_a"
elif game["score"] == "B>>A":
output["winner"] = "model_a"
weight = multiplier
else:
weight = 0
if metadata:
output["conv_metadata"] = {
"sum_assistant_a_tokens": metadata[baseline_model][row["question_id"]]["conv_metadata"]["token_len"],
"sum_assistant_b_tokens": metadata[row["model"]][row["question_id"]]["conv_metadata"]["token_len"],
"header_count_a": metadata[baseline_model][row["question_id"]]["conv_metadata"]["header_count"],
"header_count_b": metadata[row["model"]][row["question_id"]]["conv_metadata"]["header_count"],
"list_count_a": metadata[baseline_model][row["question_id"]]["conv_metadata"]["list_count"],
"list_count_b": metadata[row["model"]][row["question_id"]]["conv_metadata"]["list_count"],
"bold_count_a": metadata[baseline_model][row["question_id"]]["conv_metadata"]["bold_count"],
"bold_count_b": metadata[row["model"]][row["question_id"]]["conv_metadata"]["bold_count"],
}
if weight:
results += [output] * weight
return results
def get_battles_from_judgment(bench_name,
judge_name,
first_game_only=False,
multiplier=3,
baseline_model="gpt-4-0314",
style_control=False):
print("Turning judgment results into battles...")
judge_dir = f"data/{bench_name}/model_judgment/{judge_name}"
assert os.path.exists(judge_dir)
judgments = pd.concat([pd.read_json(file, lines=True) for file in tqdm(glob(f"{judge_dir}/*jsonl"))])
metadata = None
if style_control:
ans_dir = f"data/{bench_name}/model_answer"
assert os.path.exists(ans_dir)
metadata = {}
for file in tqdm(glob(f"{ans_dir}/*.jsonl")):
df = pd.read_json(file, lines=True)
assert "conv_metadata" in df.columns, "You must have conv_metadata attributes in your model answer to apply style contro. Please pull newest data if needed."
metadata[df.model_id[0]] = df[["question_id", "conv_metadata"]].set_index("question_id").to_dict("index")
battles = judgments.apply(lambda row: get_battles_from_row(row, first_game_only, multiplier, baseline_model, metadata), axis=1)
battles = pd.DataFrame(battles[battles.map(len) > 0].explode().tolist())
battles.to_json("data/arena_hard_battles.jsonl", orient="records", lines=True)
return battles
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--bench-name", type=str, default="arena-hard-v0.1")
parser.add_argument("--judge-name", type=str, default="gpt-4-1106-preview")
parser.add_argument("--baseline", type=str, default="gpt-4-0314")
parser.add_argument("--load-bootstrap", action="store_true")
parser.add_argument("--show-elo", action="store_true")
parser.add_argument("--weight", type=int, default=3)
parser.add_argument("--num-rounds", type=int, default=100)
parser.add_argument("--output", action="store_true")
parser.add_argument("--first-game-only", action="store_true")
parser.add_argument("--style-control", action="store_true")
parser.add_argument("--length-control-only", action="store_true")
parser.add_argument("--markdown-control-only", action="store_true")
args = parser.parse_args()
print(args)
assert not args.load_bootstrap or (args.load_battles and args.load_bootstrap), "If loading prexisting bootstrapping data, you must also load preexisting battles."
assert sum([args.style_control, args.length_control_only, args.markdown_control_only]) < 2, "You can only control one of the three: length, markdown, or both style."
answer_dir = os.path.join("data", args.bench_name, "model_answer")
model_answers = load_model_answers(answer_dir)
battles = get_battles_from_judgment(args.bench_name,
args.judge_name,
args.first_game_only,
args.weight,
args.baseline,
args.style_control or args.length_control_only or args.markdown_control_only)
if args.style_control:
X, Y, models = construct_style_matrices(battles)
bt_model_coef, style_coef = fit_bt(X, Y, models, baseline_model=args.baseline)
bootstrap_model_coef, _ = get_bootstrap_result_style_control(X, Y, battles, models,
fit_bt,
num_round=args.num_rounds,
baseline_model=args.baseline)
display_coefs = {STYLE_CONTROL_ELEMENTS[i]: round(style_coef[i], 3) for i in range(len(STYLE_CONTROL_ELEMENTS) // 2)}
print(f"Style Coefficients: {display_coefs}")
elif args.length_control_only:
X, Y, models = construct_style_matrices(battles,
apply_ratio=[1],
style_elements=LENGTH_CONTROL_ELEMENTS)
bt_model_coef, style_coef = fit_bt(X, Y, models, baseline_model=args.baseline)
bootstrap_model_coef, _ = get_bootstrap_result_style_control(X, Y, battles, models,
fit_bt,
num_round=args.num_rounds,
baseline_model=args.baseline)
display_coefs = {LENGTH_CONTROL_ELEMENTS[i]: round(style_coef[i], 3) for i in range(len(LENGTH_CONTROL_ELEMENTS) // 2)}
print(f"Style Coefficients: {display_coefs}")
elif args.markdown_control_only:
X, Y, models = construct_style_matrices(battles,
apply_ratio=[1, 1, 1],
style_elements=MARKDOWN_CONTROL_ELEMENTS)
bt_model_coef, style_coef = fit_bt(X, Y, models, baseline_model=args.baseline)
bootstrap_model_coef, _ = get_bootstrap_result_style_control(X, Y, battles, models,
fit_bt,
num_round=args.num_rounds,
baseline_model=args.baseline)
display_coefs = {MARKDOWN_CONTROL_ELEMENTS[i]: round(style_coef[i], 3) for i in range(len(MARKDOWN_CONTROL_ELEMENTS) // 2)}
print(f"Style Coefficients: {display_coefs}")
else:
bt_model_coef = compute_mle_elo(battles, baseline_model=args.baseline)
bootstrap_model_coef = get_bootstrap_result(battles, compute_mle_elo, args.num_rounds, args.baseline)
stats = pd.DataFrame()
stats["results"] = None
stats["results"] = stats['results'].astype('object')
for i, model in enumerate(bt_model_coef.index):
assert model in bootstrap_model_coef.columns
stats.at[i, "model"] = model
stats.at[i, "score"] = bt_model_coef[model]
stats.at[i, "lower"] = np.percentile(bootstrap_model_coef[model], 2.5)
stats.at[i, "upper"] = np.percentile(bootstrap_model_coef[model], 97.5)
length = 0
if model in model_answers:
for _, row in model_answers[model].items():
turn = row["choices"][0]["turns"][0]
if "token_len" in turn:
length += turn["token_len"]
else:
length += row["conv_metadata"]["token_len"]
length /= len(model_answers[model])
stats.at[i, "avg_tokens"] = int(length)
stats.at[i, "results"] = bootstrap_model_coef[model].tolist()
if not args.show_elo:
stats.sort_values(by="model", inplace=True)
stats["score"] = get_win_rate_column(stats, "score", args.baseline).tolist()
stats["lower"] = get_win_rate_column(stats, "lower", args.baseline).tolist()
stats["upper"] = get_win_rate_column(stats, "upper", args.baseline).tolist()
decimal = 1
else:
decimal = 0
stats = stats.astype({"score" : int, "lower" : int, "upper" : int})
stats.sort_values(by="score", ascending=False, inplace=True)
for _, row in stats.iterrows():
interval = str((round(row['lower'] - row['score'], decimal), round(row['upper'] - row['score'], decimal)))
print(f"{row['model'] : <30} | score: {round(row['score'], decimal) : ^5} | 95% CI: {interval : ^12} | average #tokens: {int(row['avg_tokens'])}")
# If outputting leaderboard to a csv file.
if args.output:
cur_date = datetime.datetime.now()
date_str = cur_date.strftime("%Y%m%d")
stats = stats.drop(columns=['results'])
CI = []
for i in range(len(stats)):
score = stats.iloc[i]['score']
upper = stats.iloc[i]['upper']
lower = stats.iloc[i]['lower']
CI.append(f"(-{(score-lower):.2f}, +{(upper-score):.2f})")
stats["CI"] = CI
col_list = list(stats)
stats = stats.loc[:,col_list]
stats.rename(columns={'upper': 'rating_q975'}, inplace=True)
stats.rename(columns={'lower': 'rating_q025'}, inplace=True)
col_list = list(stats)
col_list[-2], col_list[-1] = col_list[-1], col_list[-2]
stats = stats.loc[:,col_list]
stats['date'] = date_str[:4] + '-' + date_str[4:6] + '-' + date_str[6:]
stats.to_csv(f"leaderboard/arena_hard_leaderboard_{date_str}.csv", index=False)