Skip to content

Latest commit

 

History

History
54 lines (41 loc) · 2.16 KB

dataset.md

File metadata and controls

54 lines (41 loc) · 2.16 KB

Gaussian Grouping: Segment and Edit Anything in 3D Scenes

We provide dataset format and custom dataset preparation in the training doc. Here we introduce the LERF-Mask dataset proposed in our paper and its evaluation.

1. LERF-Mask dataset

You can download LERF-Mask dataset from this hugging-face link. Test set of LERF-Mask dataset includes 2-4 novel view images. The mask annotations are saved in test_mask folder. The name of each mask image corresponds to the input text-prompt.

lerf_mask
|____figurines
| |____distorted
| |____images
| |____images_train
| |____object_mask
| |____sparse
| |____stereo
| |____test_mask
|   |____<novel view 0>
|   | |____<text prompt 0>.png
|   | |____...
|   |____<novel view 1>
|   | |____<text prompt 0>.png
|   | |____...
|____ramen
| |____...
|____teatime
| |____...

2. Render mask with text-prompt

For semantic information of each mask output, since SAM masks are class-agnostic, we can use a vision-language detector's mask output, for example grounded-sam, to match our mask to give semantic information.

We test our segmentation with a simple strategy using grounded-sam on the first frame for text-prompt. You can use the following command with the provided checkpoints on hugging face or your own training result. In the future we can also explore better detectors and prompt formats.

python render_lerf_mask.py -m output/lerf_pretrain/figurines --skip_train
python render_lerf_mask.py -m output/lerf_pretrain/ramen --skip_train
python render_lerf_mask.py -m output/lerf_pretrain/teatime --skip_train

3. LERF-Mask evaluation

We provide our result on hugging face. We also provide a script for evaluating IoU and Boundary-IoU. You can change the output path to your output folder and run the script.

For example,

python script/eval_lerf_mask.py figurines
python script/eval_lerf_mask.py ramen
python script/eval_lerf_mask.py teatime