Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

aesop? suggests unusable _private.Mathlib.Data.Set.Pointwise.Basic.0.Set.involutiveNeg._eq_1 #89

Open
adomasbaliuka opened this issue Dec 1, 2023 · 2 comments

Comments

@adomasbaliuka
Copy link
Contributor

adomasbaliuka commented Dec 1, 2023

import Mathlib

lemma zero_mem_iff_zero_mem_neg (U : Set ℝ)
    : 0 ∈ U ↔ 0 ∈ -U := by
   aesop?
   -- simp_all only [Set.mem_neg, neg_zero] -- this solves it
   -- aesop? output for me has another unusable lemma:
   -- simp_all only [_private.Mathlib.Data.Set.Pointwise.Basic.0.Set.involutiveNeg._eq_1, Set.mem_neg, neg_zero]
@JLimperg
Copy link
Collaborator

JLimperg commented Dec 7, 2023

Thanks for reporting! This is either a core issue or a to_additive issue. Minimisation:

In Mathlib/Min1.lean:

import Mathlib.Tactic.ToAdditive

class Inv (α : Type _) where
  /-- Invert an element of α. -/
  inv : α → α

postfix:max "⁻¹" => Inv.inv

class InvolutiveInv (G : Type _) extends Inv G where
  protected inv_inv : ∀ x : G, x⁻¹⁻¹ = x

def Set (α : Type _) := α → Prop

instance {α} : Membership α (Set α) := sorry

@[to_additive (attr := simp)]
noncomputable instance involutiveInv {α} [InvolutiveInv α] : InvolutiveInv (Set α) where
  inv := sorry
  inv_inv s := sorry

structure Real where

instance : InvolutiveInv Real := sorry
instance {n} : OfNat Real n := sorry

In Min.lean:

import Mathlib.Min1

theorem zero_mem_iff_zero_mem_neg (U : Set Real)
    : 0 ∈ U ↔ 0 ∈ U⁻¹ := by
  set_option tactic.simp.trace true in
  simp_all
  -- Try this: simp_all only [_private.Mathlib.Min1.0.involutiveNeg._eq_1]

@JLimperg
Copy link
Collaborator

JLimperg commented Dec 7, 2023

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants