
Model-mesh:
Production model
serving at scale

Nick Hill

nickhill@us.ibm.com

Introduction

• The model-mesh framework is a mature, general-purpose model serving

management/routing layer

• Designed for production high-scale, high-density and frequently-changing

model use cases

• Intended primarily for “model as data” use cases as opposed to “model as code”

• Especially useful where there’s a high degree of usage variability between

models

• Underpins many of the IBM Watson AI cloud services/apps including Watson

Assistant, Watson Discovery, Watson Natural Language Understanding

Background

• 2015: IBM Natural Language Classifier was the first Watson Cloud service to

provide automated end-to-end training and serving of customer-provided data

• Original architecture involved spawning a dedicated container to serve every

trained customer model

• Problem:

– Was growing to tens of thousands of models and didn’t scale well

– Free plans - many rarely used or effectively abandoned

– Huge resulting memory footprint => hardware footprint => cost

• Pushing limits of scheduler => seriously impacting performance and stability

• Single point of failure for all served models (each only running in one container/VM)

• Excessive time to recover from large-scale outages

• Before Kubernetes and Serverless were ubiquitous

Model-mesh

• New approach

– Serve multiple models per container/process

– Allow dormant models to be “paged out”, loaded just-in-time if/when

used again

– Footprint can be orders of magnitude smaller than that required to serve

all models simultaneously

– Similarities with “serverless” infrastructures (knative , Cloud Functions, …)

• Philosophy

– Decouple and hide all of the (common) concerns of serving production

models at scale from the service-specific inferencing logic/technology

– Do these things once, really well

Key Design Goals

• Scalability

– Both in terms of number of models managed and usage volume of those

models

• Performance

– Minimize latency of runtime requests

• Efficiency

– Optimize use of available compute resources

• Flexibility

– Language / ML-framework agnostic, bring-your-own inferencing API

– Adapt to different usage scenarios, size/performance tradeoffs, etc.

Key Design Goals

• Simplicity of integration, short time-to-value for service teams

– Minimize requirements/concerns of service implementers

– Should be “plug-and-play”

• Operational simplicity

– Minimize requirements/concerns of provisioning and support teams

– Autonomy with respect to configuration and tuning

• Resiliency and minimization of “cache misses” at all costs

– In terms of both availability and impacts to latency

• Model-mesh is a single Docker image/container which runs alongside a “model runtime”

container in a Kubernetes pod, deployed and scaled as a single self-contained logical

Kubernetes deployment, consumed as a standard Kubernetes Service.

Architecture

consuming service

load-balanced

model

inferencing

requests

Kubernetes

deployment

+ Service

etcd
A

DC

A

G

Kubernetes pod

D

E F G

K

Common model-mesh container

ML Framework or Custom model-serving container

“Models” have unique ids and are assumed to be immutable

• They generally comprise the static artifacts resulting from a completed training process

• They might be the weights associated with a trained NN, and/or collection of other artifacts used

to perform the prediction or inferencing. This could include dictionaries or other data structures

used for pre/post-processing

• They reside in some shared backing data store, and can be loaded from the store into memory

ready to be used. They do not need to be homogenous and in particular can vary in terms of

memory consumption

Data Model

VM1

VM2 M2

M1

M3

“V-Models” are mutable aliases which point to a single concrete Model

• Can be addressed instead of models for inferencing purposes, and

behave equivalently

• Their target model can be updated dynamically

• Intended for versioning of production models

Ready-to-use ML Framework Integrations

• Works with existing model servers that support model multi-tenancy and

dynamic reconfiguration of loaded models – custom or third-party

• Built-in adapters to integrate with off-the-shelf model servers for particular ML

frameworks:

– TensorFlow Serving

– Nvidia Triton (includes Tensorflow 1 & 2, PyTorch, ONNX)

– Seldon MLServer (includes scikit-learn, XGBoost, LightGBM)

– Intel OpenVino Model Server

Contributed to KServe Open Source project

• ModelMesh Serving surrounds model-mesh with a Kubernetes-native management layer

• ServingRuntime custom resource used to specify per model server configuration

• Go-based controller orchestrates heterogeneous modelmesh Deployments behind a single

Service endpoint

• Models to be served are managed via a Predictor custom resource (to be replaced by

KServe’s existing InferenceService) – mapped to mm models and vmodels internally

• Pods for a given ServingRuntime are only started if/when there are Predictors which

require it

• Provides generalized and abstracted runtime-agnostic storage handling (to retrieve models)

• Provides built-in integration with some standard OSS model servers via injected adapter

• Supports KServe V2 REST API via optionally-injected proxy container

https://github.com/kserve/modelmesh-serving

KServe ModelMesh Serving Architecture

model-mesh

How model-mesh works in KServe:

Adapter Pattern for Existing Model Servers

• Puller is injected automatically when used

as part of KServe

• Otherwise, adapter or model server is

responsible for retrieving model data

• ID Injection allows for direct inferencing

path without needing to pass thorough

adapter

Note: The remainder of these charts cover

the function/design of the core model-mesh

container only, not how it is

managed/exposed within KServe

Model-mesh uses gRPC and is based on three logical service APIs and two logical service

boundaries (internal and external):

1. Internal model management SPI (internal)

– Comprises two primary methods: loadModel and unloadModel

– Implemented by internal “model runtime” containers - load a specified model from

backing storage into memory, ready to be served

2. External model management API (external)

– Exposed externally by model-mesh, provides methods to register and unregister

new models with the platform, and create/update/delete vmodels

3. Runtime Inferencing API (both)

– One or more arbitrary gRPC service definitions*, new or existing

– Wraps prediction/inferencing logic to invoke already-loaded model of specified id

– Implemented by internal “model runtime” containers, automatically/transparently

exposed by the external model-mesh service

APIs

*Streaming rpcs not yet supported

A

G

Internal SPI

Wrap existing model-inferencing logic in a gRPC server implementing the following API, and

package as a Docker container. Called only from within the same pod via localhost.

• loadModel (modelId, modelInfo)

– return successfully when load is complete, or fail otherwise

• unloadModel (modelId)

• modelSize (modelId)

– return memory consumed by previously-loaded model

• runtimeStatus ()

– return one of STARTING, READY, FAILING; plus total mem capacity for holding

loaded models and max loading concurrency

• Plus, one or more arbitrary grpc services comprising any number of rpc methods, for

performing prediction logic using prior-loaded model - id specified in a metadata header

A

G

Internal SPI Requirements and Guarantees

Requirements

• Must support concurrent (multithreaded) API access*

• Must be able to measure size of loaded models relatively accurately

• Loaded models are expected to remain available until explicitly

unloaded via the unloadModel method (no eviction or cache

management required)

• Inferencing/invocation API methods must read the target modelId from

a gRPC metadata param (payload agnostic header), and be idempotent

(retryable)

Guarantees

• No more than the indicated maximum number of loadModel requests

will be in-progress concurrently

• Model invocation requests will only be made for already-loaded models

*No longer a hard

requirement – see

“latency-based

autoscaling”

External API
Exposed by the model-mesh grpc-service. All methods are idempotent.

• registerModel (modelId, modelInfo, loadNow, sync)

– registers a model with the cluster, optionally triggering

an immediate load (sync or async); returns current status

• unregisterModel (modelId)

– removes/unregisters model from the service

• getStatus (modelId)

– returns one of NOT_LOADED, LOADING, LOADED, LOADING_FAILED, NOT_FOUND

• ensureLoaded (modelId, sync, lastUsedTime)

– ensure model is loaded, optionally with specified last-used timestamp; returns current status

• setVModel(…), deleteVModel(…), checkVModelStatus(…)

• Plus, all inferencing API methods exposed by the configured model server container

Integration with Model Lifecycle Management

• Upon completion of training, call registerModel to add the model to the platform

• The model is immediately available for use, but inferencing requests will be delayed until

loading completes

• LOADED state can be waited for synchronously or by polling, after which inferencing

requests will return immediately

• If this is a new version of an existing model, setVModel can be called to update the vmodel

to point to this new model

• When a model is no longer needed, unregisterModel flags it for removal. Subsequent

inferencing requests for it will immediately fail with a not-found error, and it is

asynchronously unloaded if necessary

• If the model in question is the current target of any vmodels, those must be deleted first

Integration with Model Lifecycle Management

• ensureLoaded can be used to verify that a particular model is loaded and trigger its loading if not.

It also “touches” the model so that it moves up in the LRU ordering

• This can be a useful optimization for when there is an outside hint that a model may soon be

needed

• For versioned models, the vmodel APIs (setVModel, deleteVModel) can be used by themselves:

– setVModel can register a new model and update the vmodel’s target to it in a combined

operation

– The “auto-delete” option can be used to automatically deregister models when no longer

referenced by any vmodels

When an existing vmodel is set to a new target model, the transition is asynchronous and

managed to ensure no impact to inferencing traffic (ensuring new model is loaded/scaled first)

Integration with Model-Consuming Services

• Call any of the custom inferencing API methods on the external model-mesh Kubernetes

Service

• Provide one or more model ids or vmodel ids in mm-model-id / mm-vmodel-id headers

– Unless id extraction is configured (see next chart)

• If more than one id is provided, all specified (v)models will be applied in parallel, with

results concatenated

– Assuming the API’s response message comprises of protobuf maps and/or repeated

fields, the result will be a simple aggregation (due to protobuf’s wire encoding)

• Requests should be load-balanced between all model-mesh pods in an even manner (e.g.

random or round-robbin)

• If evenly-balanced requests are guaranteed, mm-balanced=true header should be included

to benefit from additional optimizations

Model ID Extraction and Injection

• By default, inferencing requests must include a gRPC metadata header indicating the target

model or vmodel id

– Unfortunately can be cumbersome for clients to set this

• Model servers are expected to read a model id header to determine which of their loaded

models to use for a given request (and it may not be the same as the incoming external

request, for example in the vmodel case)

– Means existing model-servers require an adapter to “move” the id to the appropriate

place (typically within the protobuf request message)

• ID extraction addresses the first problem and injection addresses the second.

• A string protobuf field can be configured per service method from/in which to extract/inject

the model id, specified as a “path” of protobuf field numbers

• Model-mesh extracts/injects surgically based on offsets without copying data or

serializing/deserializing

Features – Cache Management and HA

• The cluster of service instances is managed internally as a distributed LRU cache, with the

available model server container filled with registered models

• Runtime inferencing requests can hit any instance (pod) and are forwarded (when

necessary) to an instance holding the target loaded model

• If the target model is not currently loaded, a load will be immediately triggered (in the

instance deemed most optimal at that point in time) and the request (and any others for

the same model) will be delayed until the load completes.

– This is done atomically – if multiple requests hit at the same time (across any number

of “entry” instances), only the exact intended number of copy loads will be triggered

– This cuts down on unnecessary churn/load

Features – Cache Management and HA

• Management of how many copies of a particular model are loaded, where, and when, is

handled automatically within the framework. This includes:

– Ensuring all “recently used” models have at least two copies loaded

– Scaling beyond this if (and only if) certain request load thresholds are exceeded – a

model under sufficient load can grow to have copies in every cluster instance

– Scaling down from >2 to 2 and from 2 to 1 copy is done when appropriate based on

load heuristics and last-used time respectively – the most-busy instance copies take

precedence

– Proactive loading of not-currently-loaded models where there is free space or to

replace less-recently-used loaded models

• Visual representation of typical cache distribution

Features – Cache Management and HA

two copies one copy not loaded

most recently used least recently used

~1 day ago ~2 weeks ago

“global LRU”
(on different nodes)

> 2

copies

Features – Cache Management and HA

• The global LRU is the last-used time of the least-recently-used model which is currently loaded

anywhere in the cluster

• Framework ensures that all models used since this time are loaded and ready for immediate use

• It only has significance if the cluster is full – i.e. insufficient capacity to hold an appropriate

number of copies of all registered models

• This is a key metric to track w.r.t. sizing a model serving cluster, and correlates with the

frequency of cache misses (requests which can’t be served immediately and must wait for a

model load)

• Its value changes over time and can be adjusted by scaling the size of the cluster – would be a

suitable metric for auto-scaling the deployment size, but based on experience so far changes

slowly enough that this isn’t typically necessary

• For some implementations, model loading may take an amount of time which is unacceptable

to ever have to wait on an inferencing request path – in this case just set the pod count to be

large enough to hold all models

Features – Upgrades, Migrations, Cluster Scaling

• These operations are really functionally equivalent from a Kubernetes point of view

• When a pod is stopped, be it during a rolling upgrade, node evacuation/migration, or cluster

scale-down, the following steps occur:

– The instance becomes immediately removed as a target for new placements

– Locally loaded models are propagated (in parallel) to other instances (i.e. new loadings are

triggered), based on balanced/optimal placement and prioritized based on usage recency.

Global LRU positioning and aggregate copy counts also propagated/preserved

– Queued or in-progress model loads are aborted

– The instance waits for the in-use / most recently used propagated models (not all) to finish

loading before proceeding

– The instance is unregistered from service discovery, while continuing to serve requests for a

few more seconds and complete any in-flight

– The container/pod exits

Features – Upgrades, Migrations, Cluster Scaling

• If instance versions aren’t consistent across the cluster (as will be the case during an upgrade),

model placement will automatically avoid older instances

– Results in a more efficient upgrade process, ensuring that models don’t get propagated

to instances which are also about to be stopped

• This shutdown sequence ensures that the serving service can be treated operationally like any

other homogenous microservice; no special or separate orchestration is needed for any of

these operations

Features – Heterogeneous Clusters

• Different model server types and/or configurations can be combined as a single logical

model-mesh cluster/service

• Placement is controlled via arbitrary labels that can be assigned to individual or subsets of

instances (Pods), and a set of constraints mapping model types to required and/or preferred

labels

• Uses include:

– A Kubernetes cluster where only some nodes have GPUs and certain kinds of models

may require or be able to exploit GPUs while other kinds of models in the same model-

mesh service use CPU only

– Managing heterogenous model server runtimes behind the same service

– VModels can transition between different runtime implementations assuming they

expose the same inferencing API

Optimization – Controlled, Prioritized loading

• The framework controls the number of concurrently loading models on each instance.

The “cost” of loading may depend on the model server implementation, which can

specify a suitable maximum

• This limit is important to ensure that loading activity doesn’t noticeably impact

processing of latency-sensitive inferencing requests

• Models placed on an instance which is at maximum loading capacity are queued,

resulting in a greater total loading time. To minimize this, current loading queue lengths

are advertised by each instance and taken into account in placement decisions (though

not as a first-order consideration)

Optimization – Controlled, Prioritized loading

• The queue is prioritized (not FIFO) – models with a more recent LRU time will overtake less

recently used ones (for example old models proactively loaded to fill up available space)

• In particular, upmost priority is given to loadings which have an inferencing request waiting for

them (cache-miss scenario). If already in the loading queue for another reason, a runtime request

for a model will dynamically move the load in-front of all other models which don’t have a runtime

request waiting for them – such as second copies triggered due to recent model usage.

B

K

C

n loading threads

m
o

d
e
ls q

u
e
u

e
d

fo
r lo

a
d

B

K

C

new runtime

request for

model B

K

C

B

model B is

moved to

front of

loading

queue

• Autonomy w.r.t. operational procedures minimizes scope for errors

• Structural simplicity (symmetry and few moving parts) results in a manageable number of

distributed failure scenarios/permutations to reason about, less room for different components’

views of data to become out of sync

Resiliency – Architecture Benefits

Runtime Inferencing Resiliency

• A model-mesh deployment essentially forms a decentralized “service mesh”. From the outside it

behaves like any other clustered service; internally requests are routed in a deliberate manner

• Under normal circumstances, the majority of runtime requests will result in a single internal hop,

with some taking zero and some taking two

• Per-container cpu resource allocations ensure heavily-loaded or misbehaving model serving

container doesn’t impact capacity/performance in request routing layer

• If a routed request fails due to a connection error it will be automatically retried against the next

instance which has the model loaded, or else treated as a cache-miss if there are no more

– This means there’s minimal impact if an instance dies, even to model requests currently

being processing

Model Loading Resiliency

• The framework is designed to expect failures during loading, to insulate against temporary

unavailability of object storage or whatever data store the models are retrieved from

– Failed model loads are immediately retried on up to three separate instances, after which

the model’s state will move to LOADING_FAILED

– Failure records remain on each instance, prevent the same model from loading there until

they have “expired” (10 minutes), and no load of the model will be attempted while there’s

at least 3 failure records for it in total

– This means that if appropriate given demand/cache management decisions, failed models

will continue to be retried on a regular basis

– Provides self-recovery with no manual intervention required – such as when there’s an

extended data store outage, or a bug in the service runtime code (in the latter case, after an

upgrade the failed models will automatically retry and succeed)

• Any runtime requests waiting for the failed model are automatically re-routed to the retry

instances – if a retry succeeds the in-flight requests won’t notice (apart from extra latency)

Rate-Tracking and Auto-Scaling

• Real-time inferencing request rates are tracked in each node on both a per-instance and per-

model basis

– Assessed every ~10 secs, only models used in prior time window require processing

– These are used for ongoing placement and scaling decisions

– Highest-loaded / most-frequently-used models are placed on least loaded instances and

vice versa – for example “old” models that are proactively loaded will actually prefer to land

on heavily loaded instances (which have available memory)

– This has proved very effective in maintaining a balanced load across large clusters

• Scale-up of a model is done in a decentralized manner

– Each instance makes scale-up decisions about the active models which it’s serving, based

on a dynamically-configurable per-instance request-rate threshold

– Since inferencing requests are balanced evenly between the model’s copies, this will result

in the instance’s “share” of the requests subsequently dropping below the threshold

Latency-based Auto-Scaling

• New auto-scaling mode, currently in beta

• Enabled globally for a particular model-mesh cluster

• Differences from existing request-rate-based auto-scaling:

– Each loaded model reports a maximum concurrency for inflight requests

– Model-mesh queues requests as needed

– Scaling is triggered as needed to minimize queuing time

– Explicit request load threshold parameter is no longer required or used

– Particularly suited for use-cases where:

– Per-model inferencing logic is not multi-threaded

– Per-request inferencing cost and time is high and/or variable

Implementation Details - Model Loading Stats

• As well as request rates, aggregate model-loading time statistics are

continually tracked (average and variance)

– Used as a heuristic within various other routing and timing decisions

• Self-tuning means the framework will fit use-cases with varying distributions

of model-loading times without manual configuration

Implementation Details – etcd

• An etcd instance is required for coordinating operations and persisting model/instance state

– Powerful abstraction layer means that Zookeeper can be used interchangeably if

desired

• A robust java etcd client was developed from scratch to use in production (etcd-java)

– It has now been open-sourced: https://github.com/IBM/etcd-java

• Care is taken to minimize load on the key/value store, in terms of data volume and request

frequency

• Continually-changing state (model usage times) is updated in a lazy fashion, precise cache

ordering, per-model usage rates, and model size info are only kept locally and sent via

internal RPCs

• Only aggregated instance stats are published, and only when changed by a sufficient amount

Implementation Details - Background Tasks
• Janitor

– Runs in every instance every 6 minutes

– Cross-references and reconciles local cache with model registry

– Scales-down model copies as/when appropriate

• Rate Tracker

– Runs in every instance every 10 seconds

– Processes models used since the last iteration, triggers scale-ups as necessary

• Reaper

– Runs on a single elected leader instance every 7 minutes

– Keeps track of “missing” instances referenced in the model registry and cleans up orphaned

registrations (which might exist if an instance died)

– Triggers proactive model loads if there is sufficient free space in the cluster, or any more-

recently-used not-loaded models than those which are loaded

Implementation Details – etcd Registry
• Three “tables” are maintained within etcd – models, vmodels, instances

• Every instance watches all of these tables and mirrors their contents in local memory

• Reads are from the local cache in almost all cases

• Entries are JSON-based but size is kept to a minimum (we’re considering a change to protobuf)

• The vmodels table has an entry for every vmodel with target and active model ids, used for

resolving vmodel-addressed inference requests to a concrete model id

• The models table has an entry for every registered model

– The local cache of this registry in each instance is separate from the logical weighted LRU

cache of the models that are actually loaded/loading on that instance

– These entries contain:

– Minimal metadata required by model servers to locate/load the model data

– List of instance ids where the model is loaded/loading and failed

– A refcount and some timestamps used in loading/unloading decisions

Implementation Details – etcd Registry

• The instances table has an entry for each running instance, created/updated only by that instance

and deleted when the instance shuts down

– These entries are tied to a session lease associated with the client of the corresponding

instance, so that they will be deleted automatically after a short time if the instance dies

– They contain a collection of high-level stats for the instance, updated when those values

change but rate-limited to not more than one update per 1-2 seconds

– LRU model time for the instance, model count, capacity, usage, loads in progress,

current request load (“rpm” average over last few minute), some other metadata

– These values are used to make placement decisions when a new copy of a model is to be

loaded somewhere

Implementation Details – etcd Registry

• Lifecycle of etcd model records

– Created upon registration, deleted upon deregistration (instance independent)

– List of associated instance ids used to route requests

– Before loading a model, instance adds its own id to that model’s record via an etcd

transaction

– If two instances attempt this concurrently, one will fail, see the updated record and

then re-assess loading decision / route to the other instance

– There is a periodic task run in each instance which reviews its set of loaded models and

decides which to unload based on various factors. When unload decision is made, an etcd

transaction is first performed to remove the instance’s own id from that model’s record

– There is a global periodic task (run in elected leader instance) to clean up instance ids from

model records corresponding to Pods which did not shut down gracefully

Implementation Details – etcd Registry

{
Mostly-arbitrary metadata
"type": "tensorflow",
"encKey": “abcde",
"mPath": "path/to/model",

Where model is loaded
and time each load was initiated
"instanceIds": {
"df5b84-5f9qb": 1654150842935,
"df5b84-d9d4z": 1654150276533

},

Where model failed to load
and time of failure
"failedIn": {
"df5b84-wn7sh": 1654150270218

},

Ref count (from vmodels)
"refs": 1,
Whether to auto-delete when refs==0
"autoDel": true,
Last-used time (lazily updated)
"lu": 1654186975550

}

Model record (indexed by model id)

{
Active model id
"amid": "my-model-v1",
Target model id
(equals active id in steady state)
"tmid": "my-model-v2",

can only be true when amid != tmid
"failed": false,

"o": "optional-owner"
}

VModel record (indexed by vmodel id)

Implementation Details – Data Flows

vmodels models instances

vmodels models instances

vmodel

request
model

request

cache hit

cache miss

Model server

watch/mirrorwatch/mirror

regular update/

maintain-lease

other Pods

inference

request

path

load

model

infer

local

chosen

local hit

remote

chosen

remote hit

high level

stats/metrics

look up
look up

placement

preference alg

LRU

logical

model

cache

Instance (Pod) Y

X ZY

etcd

model-mesh

Performance

• Built with strong focus on performance and scalability

– Runtime path highly optimized (network, CPU, GC, lock contention), close to

zero-copy I/O

– Written by committer of popular netty networking library

– Real-time prioritization of "critical path" model loads

– Loading/unloading rate controlled to prevent impact to runtime processing

Unix Domain Socket for intra-Pod communication

• The default mechanism for the model-mesh container to talk to the collocated

model runtime container is now via a mounted unix domain socket

• Significantly better performance than a regular IP connection via localhost

• Requires very small change to built gRPC server config and pod spec

• localhost TCP port connection still works for backwards compatibility

A G

emptyDir

volume
Pod

Model-mesh container Model runtime

container

UDS file

volumeMounts

Dashboard

• Drop-in image, deploy in your Kubernetes namespace

• Uses same etcd secret as

model-mesh deployments

• Shows real-time state/stats of

all model-mesh deployments

Note: The dashboard has not yet

been open sourced, but we

intend to do so in future

Detailed metrics published (Prometheus or statsd)

