-
Notifications
You must be signed in to change notification settings - Fork 130
/
interactionTerms.R
119 lines (76 loc) · 3.25 KB
/
interactionTerms.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# script to demonstrate each case to construct DESeq2 design term
set.seed(1234)
library(DESeq2)
# Case 1: One factor (2 groups) --------------
dds <- makeExampleDESeqDataSet(n=10000,m=12)
names(colData(dds))[1] <- 'genotype'
dds$genotype <- as.factor(rep(c(rep("WT", 3), rep("Mutant",3)),2))
dds$genotype <- relevel(dds$genotype, "WT")
df <- as.data.frame(colData(dds))
model.matrix(~ genotype, data = df)
unique(dds$genotype)
design(dds) <- ~ genotype
dds <- DESeq(dds)
resultsNames(dds)
# Case 2: One factor (multiple groups) --------------
dds <- makeExampleDESeqDataSet(n=10000,m=12)
names(colData(dds))[1] <- 'genotype'
dds$genotype <- as.factor(rep(c(rep("I", 2), rep("II",2), rep("III", 2)),2))
dds$genotype <- relevel(dds$genotype, "I")
df <- as.data.frame(colData(dds))
model.matrix(~ genotype, data = df)
unique(dds$genotype)
design(dds) <- ~ genotype
dds <- DESeq(dds)
resultsNames(dds)
# Case 3: Two factors (2 groups each) --------------
dds <- makeExampleDESeqDataSet(n=10000,m=12)
names(colData(dds))[1] <- 'genotype'
dds$treatment <- as.factor(c(rep("Control",6), rep("Treatment",6)))
dds$genotype <- as.factor(rep(c(rep("WT", 3), rep("Mutant",3)),2))
dds$genotype <- relevel(dds$genotype, "WT")
df <- as.data.frame(colData(dds))
model.matrix(~ genotype + treatment, data = df)
design(dds) <- ~ genotype + treatment
dds <- DESeq(dds)
resultsNames(dds)
# Case 4: Two factors (multiple groups) --------------
dds <- makeExampleDESeqDataSet(n=10000,m=12)
names(colData(dds))[1] <- 'genotype'
dds$genotype <- as.factor(rep(c(rep("I", 2), rep("II",2), rep("III", 2)),2))
dds$treatment <- as.factor(c(rep("Control",6), rep("Treatment",6)))
dds$genotype <- relevel(dds$genotype, "I")
# create a merged group
dds$group <- factor(paste0(dds$genotype,'_', dds$treatment))
df <- as.data.frame(colData(dds))
design(dds) <- ~ group
dds <- DESeq(dds)
resultsNames(dds)
model.matrix(~ group, data = df)
## Example 2: two conditions, two genotypes, with an interaction term
dds <- makeExampleDESeqDataSet(n=100,m=12)
dds$genotype <- factor(rep(rep(c("I","II"),each=3),2))
design(dds) <- ~ genotype + condition + genotype:condition
dds <- DESeq(dds)
resultsNames(dds)
colData(dds)
# the condition effect for genotype I (the main effect)
results(dds, contrast=c("condition","B","A"))
# the condition effect for genotype II
# this is, by definition, the main effect *plus* the interaction term
# (the extra condition effect in genotype II compared to genotype I).
results(dds, list( c("condition_B_vs_A","genotypeII.conditionB") ))
# the interaction term, answering: is the condition effect *different* across genotypes?
results(dds, name="genotypeII.conditionB")
model.matrix(~ genotype + condition + genotype:condition, data = colData(dds))
# Case 5: Two factors (multiple groups - interaction term) --------------
dds <- makeExampleDESeqDataSet(n=10000,m=12)
names(colData(dds))[1] <- 'genotype'
dds$genotype <- as.factor(rep(c(rep("I", 2), rep("II",2), rep("III", 2)),2))
dds$treatment <- as.factor(c(rep("Control",6), rep("Treatment",6)))
dds$genotype <- relevel(dds$genotype, "I")
df <- as.data.frame(colData(dds))
design(dds) <- ~ genotype + treatment + genotype:treatment
dds <- DESeq(dds)
resultsNames(dds)
model.matrix(~ genotype + treatment + genotype:treatment, data = df)