- A. M. Legendre, Théorie des nombres, Third edition, Paris, 1830. Vol. 2, p. 65.
- D. H. Lehmer, On the exact number of primes less than a given limit, Illinois J. Math. 3 (1959), pp. 381–388.
- J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing pi(x): The Meissel-Lehmer method, Mathematics of Computation, 44 (1985), pp. 537–560.
- M. Deleglise and J. Rivat, "Computing pi(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko Method", Mathematics of Computation, Volume 65, Number 213, 1996, pp 235–245.
- Hans Riesel, Prime Numbers and Computer Methods for Factorization, 2nd ed., Birkhäuser, Boston, 1994. pp. 10-38.
- Raymond Séroul, Programming for Mathematicians, Springer-Verlag, Berlin (2000), pp. 175-181.
- Xavier Gourdon, Computation of pi(x) : improvements to the Meissel, Lehmer, Lagarias, Miller, Odllyzko, Deléglise and Rivat method, February 15, 2001.
- R. Crandall and C. Pomerance, Prime numbers: a computational perspective, 2nd ed., Springer, New York, 2005. pp. 152-162.
- Tomás Oliveira e Silva, Computing pi(x): the combinatorial method, Revista do DETUA, vol. 4, no. 6, March 2006, pp. 759-768.
- Douglas B. Staple, The combinatorial algorithm for computing pi(x), Master of Science Thesis, Dalhousie University Halifax, Nova Scotia, August 2015.
- Jan Büthe, An improved analytic method for calculating pi(x), Manuscripta Math. 151 (2016), no. 3-4, 329-352.