-
Notifications
You must be signed in to change notification settings - Fork 46
/
point.ts
247 lines (217 loc) · 6.5 KB
/
point.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import { ObservablePoint, IPoint } from "@pixi/math"
import { Vec3 } from "../math/vec3"
import { Matrix4x4 } from "./matrix"
import { Quaternion } from "./quaternion"
const temp = new Float32Array(3)
/**
* Represents a point in 3D space.
*/
export class Point3D extends ObservablePoint {
private _array = new Float32Array(3)
/** Array containing the x, y, z values. */
get array() {
return this._array
}
set array(value: Float32Array) {
this.setFrom(value)
}
/**
* Creates a new observable point.
* @param x The position on the x axis.
* @param y The position on the y axis.
* @param z The position on the z axis.
* @param cb The callback when changed.
* @param scope The owner of callback.
*/
constructor(x = 0, y = 0, z = 0, cb: () => void = () => { }, scope: any = undefined) {
super(cb, scope)
this._array.set([x, y, z])
}
/**
* Position on the x axis relative to the local coordinates of the parent.
*/
get x() {
return this._array[0]
}
set x(value: number) {
if (this._array[0] !== value) {
this._array[0] = value
this.cb.call(this.scope)
}
}
/**
* Position on the y axis relative to the local coordinates of the parent.
*/
get y() {
return this._array[1]
}
set y(value: number) {
if (this._array[1] !== value) {
this._array[1] = value
this.cb.call(this.scope)
}
}
/**
* Position on the z axis relative to the local coordinates of the parent.
*/
get z() {
return this._array[2]
}
set z(value: number) {
if (this._array[2] !== value) {
this._array[2] = value
this.cb.call(this.scope)
}
}
clone(cb = this.cb, scope = this.scope) {
return new Point3D(this.x, this.y, this.z, cb, scope)
}
copyFrom(p: Point3D) {
if (this._array[0] !== p.x || this._array[1] !== p.y || this._array[2] !== p.z) {
this._array[0] = p.x
this._array[1] = p.y
this._array[2] = p.z
this.cb.call(this.scope)
}
return this
}
copyTo<T extends IPoint>(p: T) {
if (p instanceof Point3D) {
p.set(this.x, this.y, this.z)
}
return <T>p
}
equals(p: Point3D): boolean {
return p.x === this.x && p.y === this.y && p.z === this.z
}
/**
* Sets the point to a new x, y and z position.
* @param x The position on the x axis.
* @param y The position on the y axis.
* @param z The position on the z axis.
*/
set(x: number, y = x, z = x) {
if (this._array[0] !== x || this._array[1] !== y || this._array[2] !== z) {
this._array[0] = x
this._array[1] = y
this._array[2] = z
this.cb.call(this.scope)
}
return this
}
/**
* Sets the point to a new x, y and z position.
* @param array The array containing x, y and z, expected length is 3.
*/
setFrom(array: ArrayLike<number>) {
this.set(array[0], array[1], array[2]); return this
}
/**
* Normalize the point.
* @param out The receiving point. If not supplied, a new point will be created.
*/
normalize(out = new Point3D()) {
return out.setFrom(Vec3.normalize(this._array, temp))
}
/** Calculates the length of the point. */
get magnitude() {
return Vec3.magnitude(this._array)
}
/**
* Calculates the dot product of two points.
* @param a The first point.
* @param b The second point.
*/
static dot(a: Point3D, b: Point3D) {
return Vec3.dot(a._array, b._array)
}
/**
* Adds two points.
* @param a The first point.
* @param b The second point.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static add(a: Point3D, b: Point3D, out = new Point3D()) {
return out.setFrom(Vec3.add(a._array, b._array, temp))
}
/**
* Subtracts the second point from the first point.
* @param a The first point.
* @param b The second point.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static subtract(a: Point3D, b: Point3D, out = new Point3D()) {
return out.setFrom(Vec3.subtract(a._array, b._array, temp))
}
/**
* Computes the cross product of two points.
* @param a The first point.
* @param b The second point.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static cross(a: Point3D, b: Point3D, out = new Point3D()) {
return out.setFrom(Vec3.cross(a._array, b._array, temp))
}
/**
* Inverts of the components of a point.
* @param a The point to invert.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static inverse(a: Point3D, out = new Point3D()) {
return out.setFrom(Vec3.inverse(a._array, temp))
}
/**
* Calculates the euclidian distance between two points.
* @param a The first point.
* @param b The second point.
*/
static distance(a: Point3D, b: Point3D) {
return Vec3.distance(a._array, b._array)
}
/**
* Calculates the squared euclidian distance between two points.
* @param a The first point.
* @param b The second point.
*/
static squaredDistance(a: Point3D, b: Point3D) {
return Vec3.squaredDistance(a._array, b._array)
}
/**
* Multiplies two points.
* @param a The first point.
* @param b The second point.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static multiply(a: Point3D, b: Point3D, out = new Point3D()) {
return out.setFrom(Vec3.multiply(a._array, b._array, temp))
}
/**
* Negates the components of a point.
* @param a The point to negate.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static negate(a: Point3D, out = new Point3D()) {
return out.setFrom(Vec3.negate(a._array, temp))
}
/**
* Transforms a point with a matrix or quaternion.
* @param a The point to transform.
* @param m The matrix or quaternion to transform with.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static transform(a: Point3D, m: Matrix4x4 | Quaternion, out = new Point3D()) {
if (m instanceof Matrix4x4) {
return out.setFrom(Vec3.transformMat4(a._array, m.array, temp))
}
return out.setFrom(Vec3.transformQuat(a._array, m.array, temp))
}
/**
* Scales a point by a scalar number.
* @param a The point to scale.
* @param b The amount to scale the point by.
* @param out The receiving point. If not supplied, a new point will be created.
*/
static scale(a: Point3D, b: number, out = new Point3D()) {
return out.setFrom(Vec3.scale(a._array, b, temp))
}
}