Skip to content

Latest commit

 

History

History
299 lines (270 loc) · 11.6 KB

CHANGELOG.md

File metadata and controls

299 lines (270 loc) · 11.6 KB

Changelog

v0.1.0 (2019-05-22)

Bug fixes and other changes

v2.0.7 (2019-08-15)

Bug fixes and other changes

  • update no-p2 and no-p3 regions.

v2.0.6 (2019-08-01)

Bug fixes and other changes

  • fix horovod mnist script

v2.0.5 (2019-06-17)

Bug fixes and other changes

  • bump sagemaker-containers version to 2.4.10
  • add hyperparameter tuning test

v2.0.4 (2019-06-06)

Bug fixes and other changes

  • fix integ test errors when running with py2

v2.0.3 (2019-06-06)

Bug fixes and other changes

  • only run one test during deployment

v2.0.2 (2019-06-04)

Bug fixes and other changes

  • resolve pluggy version conflict

v2.0.1 (2019-06-03)

Bug fixes and other changes

  • remove non-ascii character in CHANGELOG
  • remove extra comma in buildspec-release.yml

v2.0.0 (2019-06-03)

Bug fixes and other changes

  • Parameterize processor and py_version for test runs
  • use unique name for integration job hyperparameter tuning job
  • fix flake8 errors and add flake8 run in buildspec.yml
  • skip gpu SageMaker test in regions with limited amount of p2/3 instances
  • skip setup on second remote run
  • add setup file back
  • add branch name to remote gpu test run command
  • remove setup file in release build gpu test
  • ignore coverage in release build tests
  • use tar file name as framework_support_installable in build_all.py
  • Add release build
  • Explicitly set lower-bound for botocore version
  • Pull request to test codebuild trigger on TensorFlow script mode
  • Update integ test for checking Python version
  • Upgrade to TensorFlow 1.13.1
  • Add mpi4py to pip installs
  • Add SageMaker integ test for hyperparameter tuning model_dir logic
  • Add Horovod benchmark
  • Fix model_dir adjustment for hyperparameter tuning jobs
  • change model_dir to training job name if it is for tuning.
  • Tune test_s3_plugin test
  • Skip the s3_plugin test before new binary released
  • Add model saving warning at end of training
  • Specify region when creating S3 resource in integ tests
  • Fix instance_type fixture setup for tests
  • Read framework version from Python SDK for integ test default
  • Fix SageMaker Session handling in Horovod test
  • Configure encoding to be utf-8
  • Use the test argement framework_version in all tests
  • Fix broken test test_distributed_mnist_no_ps
  • Add S3 plugin tests
  • Skip horovod local CPU test in GPU instances
  • Add Horovod tests
  • Skip horovod integration tests
  • TensorFlow 1.12 and Horovod support
  • Deprecate get_marker. Use get_closest_marker instead
  • Force parameter server to run on CPU
  • Add python-dev and build-essential to Dockerfiles
  • Update script_mode_train_any_tf_script_in_sage_maker.ipynb
  • Skip keras local mode test on gpu and use random port for serving in the test
  • Fix Keras test
  • Create parameter server in different thread
  • Add Keras support
  • Fix broken unit tests
  • Unset CUDA_VISIBLE_DEVICES for worker processes
  • Disable GPU for parameter process
  • Set parameter process waiting to False
  • Update sagemaker containers
  • GPU fix
  • Set S3 environment variables
  • Add CI configuration files
  • Add distributed training support
  • Edited the tf script mode notebook
  • Add benchmarking script
  • Add Script Mode example
  • Add integration tests to run training jobs with sagemaker
  • Add tox.ini and configure coverage and flake runs
  • Scriptmode single machine training implementation
  • Update region in s3 boto client in serve
  • Update readme with instructions for 1.9.0 and above
  • Fix deserialization of dicts for json predict requests
  • Add dockerfile and update test for tensorflow 1.10.0
  • Support tensorflow 1.9.0
  • Add integ tests to verify that tensorflow in gpu-image can access gpu-devices.
  • train on 3 epochs for pipe mode test
  • Change error classes used by _default_input_fn() and _default_output_fn()
  • Changing assertion to check only existence
  • Install sagemaker-tensorflow from pypi. Add MKL environment variables for TF 1.8
  • get most recent saved model to export
  • pip install tensorflow 1.8 in 1.8 cpu image
  • install tensorflow extensions
  • upgrade cpu binaries in docker build
  • Force upgrade of the framework binaries to make sure the right binaries are installed.
  • Add Pillow to pip install list
  • Increase train steps for cifar distributed test to mitigate race condition
  • Add TensorFlow 1.8 dockerfiles
  • Add TensorFlow 1.7 dockerfiles
  • Explain how to download tf binaries from PyPI
  • Allow training without S3
  • Fix hyperparameter name for detecting a tuning job
  • Checkout v1.4.1 tag instead of r1.4 branch
  • Move processing of requirements file in.
  • Generate checkpoint path using TRAINING_JOB_NAME environment variable if needed
  • Wrap user-provided model_fn to pass arguments positionally (maintains compatibility with existing behavior)
  • Add more unit tests for trainer, fix all and rename train.py to avoid import conflict
  • Use regional endpoint for S3 client
  • Update README.rst
  • Pass input_channels to eval_input_fn if defined
  • Fix setup.py to refer to renamed README
  • Add test and build instructions
  • Fix year in license headers
  • Add TensorFlow 1.6
  • Add test instructions in README
  • Add container support to install_requires
  • Add Apache license headers
  • Use wget to install tensorflow-model-server
  • Fix file path for integ test
  • Fix s3_prefix path in integ test
  • Fix typo in path for integ test
  • Add input_channels to train_input_fn interface.
  • Update logging and make serving_input_fn optional.
  • remove pip install in tensorflow training
  • Modify integration tests to run nvidia-docker for gpu
  • add h5py for keras models
  • Add local integ tests & resources
  • Restructure repo to use a directory per TF version for dockerfiles
  • Rename "feature_map" variables to "feature_dict" to avoid overloading it with the ML term "feature map"
  • Copying in changes from internal repo:
  • Add functional test
  • Fix FROM image names for final build dockerfiles
  • Add dockerfiles for building our production images (TF 1.4)
  • GPU Dockerfile and setup.py fixes
  • Add base image Dockerfiles for 1.4
  • Merge pull request #1 from aws/mvs-first-commit
  • first commit
  • Updating initial README.md from template
  • Creating initial file from template
  • Creating initial file from template
  • Creating initial file from template
  • Creating initial file from template
  • Creating initial file from template
  • Initial commit

v0.1.0 (2019-05-22)

Bug fixes and other changes

  • skip setup on second remote run
  • add setup file back
  • add branch name to remote gpu test run command
  • remove setup file in release build gpu test
  • ignore coverage in release build tests
  • use tar file name as framework_support_installable in build_all.py
  • Add release build
  • Explicitly set lower-bound for botocore version
  • Pull request to test codebuild trigger on TensorFlow script mode
  • Update integ test for checking Python version
  • Upgrade to TensorFlow 1.13.1
  • Add mpi4py to pip installs
  • Add SageMaker integ test for hyperparameter tuning model_dir logic
  • Add Horovod benchmark
  • Fix model_dir adjustment for hyperparameter tuning jobs
  • change model_dir to training job name if it is for tuning.
  • Tune test_s3_plugin test
  • Skip the s3_plugin test before new binary released
  • Add model saving warning at end of training
  • Specify region when creating S3 resource in integ tests
  • Fix instance_type fixture setup for tests
  • Read framework version from Python SDK for integ test default
  • Fix SageMaker Session handling in Horovod test
  • Configure encoding to be utf-8
  • Use the test argement framework_version in all tests
  • Fix broken test test_distributed_mnist_no_ps
  • Add S3 plugin tests
  • Skip horovod local CPU test in GPU instances
  • Add Horovod tests
  • Skip horovod integration tests
  • TensorFlow 1.12 and Horovod support
  • Deprecate get_marker. Use get_closest_marker instead
  • Force parameter server to run on CPU
  • Add python-dev and build-essential to Dockerfiles
  • Update script_mode_train_any_tf_script_in_sage_maker.ipynb
  • Skip keras local mode test on gpu and use random port for serving in the test
  • Fix Keras test
  • Create parameter server in different thread
  • Add Keras support
  • Fix broken unit tests
  • Unset CUDA_VISIBLE_DEVICES for worker processes
  • Disable GPU for parameter process
  • Set parameter process waiting to False
  • Update sagemaker containers
  • GPU fix
  • Set S3 environment variables
  • Add CI configuration files
  • Add distributed training support
  • Edited the tf script mode notebook
  • Add benchmarking script
  • Add Script Mode example
  • Add integration tests to run training jobs with sagemaker
  • Add tox.ini and configure coverage and flake runs
  • Scriptmode single machine training implementation
  • Update region in s3 boto client in serve
  • Update readme with instructions for 1.9.0 and above
  • Fix deserialization of dicts for json predict requests
  • Add dockerfile and update test for tensorflow 1.10.0
  • Support tensorflow 1.9.0
  • Add integ tests to verify that tensorflow in gpu-image can access gpu-devices.
  • train on 3 epochs for pipe mode test
  • Change error classes used by _default_input_fn() and _default_output_fn()
  • Changing assertion to check only existence
  • Install sagemaker-tensorflow from pypi. Add MKL environment variables for TF 1.8
  • get most recent saved model to export
  • pip install tensorflow 1.8 in 1.8 cpu image
  • install tensorflow extensions
  • upgrade cpu binaries in docker build
  • Force upgrade of the framework binaries to make sure the right binaries are installed.
  • Add Pillow to pip install list
  • Increase train steps for cifar distributed test to mitigate race condition
  • Add TensorFlow 1.8 dockerfiles
  • Add TensorFlow 1.7 dockerfiles
  • Explain how to download tf binaries from PyPI
  • Allow training without S3
  • Fix hyperparameter name for detecting a tuning job
  • Checkout v1.4.1 tag instead of r1.4 branch
  • Move processing of requirements file in.
  • Generate checkpoint path using TRAINING_JOB_NAME environment variable if needed
  • Wrap user-provided model_fn to pass arguments positionally (maintains compatibility with existing behavior)
  • Add more unit tests for trainer, fix all and rename train.py to avoid import conflict
  • Use regional endpoint for S3 client
  • Update README.rst
  • Pass input_channels to eval_input_fn if defined
  • Fix setup.py to refer to renamed README
  • Add test and build instructions
  • Fix year in license headers
  • Add TensorFlow 1.6
  • Add test instructions in README
  • Add container support to install_requires
  • Add Apache license headers
  • Use wget to install tensorflow-model-server
  • Fix file path for integ test
  • Fix s3_prefix path in integ test
  • Fix typo in path for integ test
  • Add input_channels to train_input_fn interface.
  • Update logging and make serving_input_fn optional.
  • remove pip install in tensorflow training
  • Modify integration tests to run nvidia-docker for gpu
  • add h5py for keras models
  • Add local integ tests & resources
  • Restructure repo to use a directory per TF version for dockerfiles
  • Rename "feature_map" variables to "feature_dict" to avoid overloading it with the ML term "feature map"
  • Copying in changes from internal repo:
  • Add functional test
  • Fix FROM image names for final build dockerfiles
  • Add dockerfiles for building our production images (TF 1.4)
  • GPU Dockerfile and setup.py fixes
  • Add base image Dockerfiles for 1.4
  • Merge pull request #1 from aws/mvs-first-commit
  • first commit
  • Updating initial README.md from template
  • Creating initial file from template
  • Creating initial file from template
  • Creating initial file from template
  • Creating initial file from template
  • Creating initial file from template
  • Initial commit