-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
229 lines (203 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import cv2
import argparse
import numpy as np
config = {'person_conf_thres': 0.7, 'person_iou_thres': 0.45, 'kp_conf_thres': 0.5,
'kp_iou_thres': 0.45, 'conf_thres_kp_person': 0.2, 'overwrite_tol': 25,
'kp_face': [0, 1, 2, 3, 4], 'use_kp_dets': True,
'segments': {1: [5, 6], 2: [5, 11], 3: [11, 12], 4: [12, 6], 5: [5, 7], 6: [7, 9], 7: [6, 8], 8: [8, 10],
9: [11, 13], 10: [13, 15], 11: [12, 14], 12: [14, 16]},
'crowd_segments':{1: [0, 13], 2: [1, 13], 3: [0, 2], 4: [2, 4], 5: [1, 3], 6: [3, 5], 7: [0, 6], 8: [6, 7], 9: [7, 1], 10: [6, 8], 11: [8, 10], 12: [7, 9], 13: [9, 11], 14: [12, 13]},
'crowd_kp_face':[]}
class yolov5():
def __init__(self, modelpath):
if modelpath.endswith('_coco.onnx'):
with open('class.names', 'rt') as f:
self.classes = f.read().rstrip('\n').split('\n')
self.lines = config['segments']
self.kp_face = config['kp_face']
else:
with open('crowd_class.names', 'rt') as f:
self.classes = f.read().rstrip('\n').split('\n')
self.lines = config['crowd_segments']
self.kp_face = config['crowd_kp_face']
self.num_classes = len(self.classes)
self.inpHeight, self.inpWidth = 1280, 1280
anchors = [[19, 27, 44, 40, 38, 94], [96, 68, 86, 152, 180, 137], [140, 301, 303, 264, 238, 542],
[436, 615, 739, 380, 925, 792]]
self.stride = np.array([8., 16., 32., 64.])
self.nl = len(anchors)
self.na = len(anchors[0]) // 2
self.grid = [np.zeros(1)] * self.nl
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
self.net = cv2.dnn.readNet(modelpath)
self._inputNames = ''
self.last_ind = 5 + self.num_classes
def resize_image(self, srcimg, keep_ratio=True, dynamic=False):
top, left, newh, neww = 0, 0, self.inpWidth, self.inpHeight
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
if not dynamic:
left = int((self.inpWidth - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, left, self.inpWidth - neww - left, cv2.BORDER_CONSTANT,
value=(114, 114, 114)) # add border
else:
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
if not dynamic:
top = int((self.inpHeight - newh) * 0.5)
img = cv2.copyMakeBorder(img, top, self.inpHeight - newh - top, 0, 0, cv2.BORDER_CONSTANT,
value=(114, 114, 114))
else:
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
return img, newh, neww, top, left
def _make_grid(self, nx=20, ny=20):
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
def preprocess(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32) / 255.0
return img
def postprocess(self, frame, outs, padsize=None):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
newh, neww, padh, padw = padsize
ratioh, ratiow = frameHeight / newh, frameWidth / neww
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
person_confidences, kp_confidences = [], []
person_boxes, kp_boxes = [], []
person_classIds, kp_classIds = [], []
person_rowinds = []
for i in range(outs.shape[0]):
detection = outs[i, :]
scores = detection[5:self.last_ind]
classId = np.argmax(scores)
confidence = scores[classId] * detection[4]
if classId == 0:
if detection[4] > config['person_conf_thres'] and confidence > config['person_conf_thres']:
center_x = int((detection[0] - padw) * ratiow)
center_y = int((detection[1] - padh) * ratioh)
width = int(detection[2] * ratiow)
height = int(detection[3] * ratioh)
left = int(center_x - width * 0.5)
top = int(center_y - height * 0.5)
person_confidences.append(float(confidence))
person_boxes.append([left, top, width, height])
person_classIds.append(classId)
person_rowinds.append(i)
else:
if detection[4] > config['kp_conf_thres'] and confidence > config['kp_conf_thres']:
center_x = int((detection[0] - padw) * ratiow)
center_y = int((detection[1] - padh) * ratioh)
width = int(detection[2] * ratiow)
height = int(detection[3] * ratioh)
left = int(center_x - width * 0.5)
top = int(center_y - height * 0.5)
kp_confidences.append(float(confidence))
kp_boxes.append([left, top, width, height])
kp_classIds.append(classId)
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
person_indices = cv2.dnn.NMSBoxes(person_boxes, person_confidences, config['person_conf_thres'],
config['person_iou_thres']).flatten()
kp_indices = cv2.dnn.NMSBoxes(kp_boxes, kp_confidences, config['kp_conf_thres'],
config['kp_iou_thres']).flatten()
poses = []
for i in person_indices:
if person_confidences[i] > config['conf_thres_kp_person']:
pose = outs[person_rowinds[i], self.last_ind:].reshape((-1, 2))
pose[:, 0] = (pose[:, 0] - padw) * ratiow
pose[:, 1] = (pose[:, 1] - padh) * ratioh
poses.append(pose)
nd = len(poses)
poses = np.array(poses)
poses = np.concatenate((poses, np.zeros((nd, poses.shape[1], 1))), axis=-1)
for j in kp_indices:
box = kp_boxes[j]
x = box[0] + 0.5 * box[2]
y = box[1] + 0.5 * box[3]
pt_id = kp_classIds[j] - 1
pose_kps = poses[:, pt_id, :]
dist = np.linalg.norm(pose_kps[:, :2] - np.array([[x, y]]), axis=-1)
kp_match = np.argmin(dist)
if kp_confidences[j] > pose_kps[kp_match, 2] and dist[kp_match] < config['overwrite_tol']:
poses[kp_match, pt_id, :] = np.array([x, y, kp_confidences[j]])
for i in person_indices:
box = person_boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
frame = self.drawPred(frame, person_classIds[i], person_confidences[i], left, top, left + width,
top + height)
for pose in poses:
for seg in self.lines.values():
pt1 = (int(pose[seg[0], 0]), int(pose[seg[0], 1]))
pt2 = (int(pose[seg[1], 0]), int(pose[seg[1], 1]))
cv2.line(frame, pt1, pt2, (255, 0, 255), 1)
for x, y, c in pose:
if c > 0:
cv2.circle(frame, (int(x), int(y)), 1, (0, 0, 255), 1)
#for x, y, c in pose[self.kp_face]:
#cv2.circle(frame, (int(x), int(y)), 1, (255, 0, 255), 1)
# for i in kp_indices:
# box = kp_boxes[i]
# left = box[0]
# top = box[1]
# width = box[2]
# height = box[3]
# frame = self.drawPred(frame, kp_classIds[i], kp_confidences[i], left, top, left + width, top + height)
return frame
def drawPred(self, frame, classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=1)
label = '%.2f' % conf
label = '%s:%s' % (self.classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), thickness=1)
return frame
def detect(self, srcimg):
img, newh, neww, padh, padw = self.resize_image(srcimg)
blob = cv2.dnn.blobFromImage(img, scalefactor=1 / 255.0, swapRB=True)
# blob = cv2.dnn.blobFromImage(self.preprocess(img))
# Sets the input to the network
self.net.setInput(blob, self._inputNames)
# Runs the forward pass to get output of the output layers
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())[0].squeeze(axis=0)
# inference output
row_ind = 0
for i in range(self.nl):
h, w = int(self.inpHeight / self.stride[i]), int(self.inpWidth / self.stride[i])
length = int(self.na * h * w)
if self.grid[i].shape[2:4] != (h, w):
self.grid[i] = self._make_grid(w, h)
outs[row_ind:row_ind + length, 0:2] = (outs[row_ind:row_ind + length, 0:2] * 2. - 0.5 + np.tile(
self.grid[i], (self.na, 1))) * int(self.stride[i])
outs[row_ind:row_ind + length, 2:4] = (outs[row_ind:row_ind + length, 2:4] * 2) ** 2 * np.repeat(
self.anchor_grid[i], h * w, axis=0)
self.num_coords = outs.shape[1] - self.last_ind
outs[row_ind:row_ind + length, self.last_ind:] = outs[row_ind:row_ind + length, self.last_ind:] * 4. - 2.
outs[row_ind:row_ind + length, self.last_ind:] *= np.tile(np.repeat(self.anchor_grid[i], h * w, axis=0), (1, self.num_coords//2))
outs[row_ind:row_ind + length, self.last_ind:] += np.tile(np.tile(self.grid[i], (self.na, 1)) * int(self.stride[i]), (1, self.num_coords//2))
row_ind += length
srcimg = self.postprocess(srcimg, outs, padsize=(newh, neww, padh, padw))
return srcimg
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--imgpath', type=str, default='images/crowdpose_100024.jpg', help="image path")
parser.add_argument('--modelpath', type=str, default='weights/kapao_s_coco.onnx')
args = parser.parse_args()
yolonet = yolov5(args.modelpath)
srcimg = cv2.imread(args.imgpath)
srcimg = yolonet.detect(srcimg)
winName = 'Deep learning object detection in OpenCV'
cv2.namedWindow(winName, 0)
cv2.imshow(winName, srcimg)
cv2.waitKey(0)
cv2.destroyAllWindows()