-
Notifications
You must be signed in to change notification settings - Fork 276
/
model.py
267 lines (214 loc) · 11.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn as nn
import math
class LayerNormalization(nn.Module):
def __init__(self, features: int, eps:float=10**-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(features)) # alpha is a learnable parameter
self.bias = nn.Parameter(torch.zeros(features)) # bias is a learnable parameter
def forward(self, x):
# x: (batch, seq_len, hidden_size)
# Keep the dimension for broadcasting
mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1)
# Keep the dimension for broadcasting
std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1)
# eps is to prevent dividing by zero or when std is very small
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class FeedForwardBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2
def forward(self, x):
# (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
class InputEmbeddings(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
# (batch, seq_len) --> (batch, seq_len, d_model)
# Multiply by sqrt(d_model) to scale the embeddings according to the paper
return self.embedding(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.seq_len = seq_len
self.dropout = nn.Dropout(dropout)
# Create a matrix of shape (seq_len, d_model)
pe = torch.zeros(seq_len, d_model)
# Create a vector of shape (seq_len)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1)
# Create a vector of shape (d_model)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2)
# Apply sine to even indices
pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model))
# Apply cosine to odd indices
pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model))
# Add a batch dimension to the positional encoding
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
# Register the positional encoding as a buffer
self.register_buffer('pe', pe)
def forward(self, x):
x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
return self.dropout(x)
class ResidualConnection(nn.Module):
def __init__(self, features: int, dropout: float) -> None:
super().__init__()
self.dropout = nn.Dropout(dropout)
self.norm = LayerNormalization(features)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, h: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model # Embedding vector size
self.h = h # Number of heads
# Make sure d_model is divisible by h
assert d_model % h == 0, "d_model is not divisible by h"
self.d_k = d_model // h # Dimension of vector seen by each head
self.w_q = nn.Linear(d_model, d_model, bias=False) # Wq
self.w_k = nn.Linear(d_model, d_model, bias=False) # Wk
self.w_v = nn.Linear(d_model, d_model, bias=False) # Wv
self.w_o = nn.Linear(d_model, d_model, bias=False) # Wo
self.dropout = nn.Dropout(dropout)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
# Just apply the formula from the paper
# (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
# Write a very low value (indicating -inf) to the positions where mask == 0
attention_scores.masked_fill_(mask == 0, -1e9)
attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax
if dropout is not None:
attention_scores = dropout(attention_scores)
# (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k)
# return attention scores which can be used for visualization
return (attention_scores @ value), attention_scores
def forward(self, q, k, v, mask):
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)
# Calculate attention
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
# Combine all the heads together
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
# Multiply by Wo
# (batch, seq_len, d_model) --> (batch, seq_len, d_model)
return self.w_o(x)
class EncoderBlock(nn.Module):
def __init__(self, features: int, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(2)])
def forward(self, x, src_mask):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask))
x = self.residual_connections[1](x, self.feed_forward_block)
return x
class Encoder(nn.Module):
def __init__(self, features: int, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization(features)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class DecoderBlock(nn.Module):
def __init__(self, features: int, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(3)])
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
x = self.residual_connections[2](x, self.feed_forward_block)
return x
class Decoder(nn.Module):
def __init__(self, features: int, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization(features)
def forward(self, x, encoder_output, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, tgt_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
def __init__(self, d_model, vocab_size) -> None:
super().__init__()
self.proj = nn.Linear(d_model, vocab_size)
def forward(self, x) -> None:
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
return self.proj(x)
class Transformer(nn.Module):
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: InputEmbeddings, tgt_embed: InputEmbeddings, src_pos: PositionalEncoding, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.src_pos = src_pos
self.tgt_pos = tgt_pos
self.projection_layer = projection_layer
def encode(self, src, src_mask):
# (batch, seq_len, d_model)
src = self.src_embed(src)
src = self.src_pos(src)
return self.encoder(src, src_mask)
def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
# (batch, seq_len, d_model)
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
def project(self, x):
# (batch, seq_len, vocab_size)
return self.projection_layer(x)
def build_transformer(src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int=512, N: int=6, h: int=8, dropout: float=0.1, d_ff: int=2048) -> Transformer:
# Create the embedding layers
src_embed = InputEmbeddings(d_model, src_vocab_size)
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
# Create the positional encoding layers
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
# Create the encoder blocks
encoder_blocks = []
for _ in range(N):
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
encoder_block = EncoderBlock(d_model, encoder_self_attention_block, feed_forward_block, dropout)
encoder_blocks.append(encoder_block)
# Create the decoder blocks
decoder_blocks = []
for _ in range(N):
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
decoder_block = DecoderBlock(d_model, decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout)
decoder_blocks.append(decoder_block)
# Create the encoder and decoder
encoder = Encoder(d_model, nn.ModuleList(encoder_blocks))
decoder = Decoder(d_model, nn.ModuleList(decoder_blocks))
# Create the projection layer
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
# Create the transformer
transformer = Transformer(encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer)
# Initialize the parameters
for p in transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return transformer