Skip to content

Files

Latest commit

db67cb9 · May 7, 2024

History

History
This branch is 240 commits behind pytorch/TensorRT:main.

notebooks

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jul 7, 2022
Jun 24, 2022
Jan 25, 2024
Jun 24, 2022
Aug 9, 2022
May 7, 2024
Nov 2, 2022
May 7, 2024
Jun 2, 2022
Aug 22, 2022
Jun 28, 2022
Jun 24, 2022
Aug 9, 2022
Jun 2, 2022
Jun 24, 2022

Jupyter demo notebooks

This folder contains demo notebooks for Torch-TensorRT.

1. Requirements

The most convenient way to run these notebooks is via a docker container, which provides a self-contained, isolated and re-producible environment for all experiments.

First, clone the repository:

git clone https://github.com/pytorch/TensorRT

Next, navigate to the repo's root directory:

cd Torch-TensorRT

a. Using the NGC PyTorch container

At this point, we recommend pulling the PyTorch container from NVIDIA GPU Cloud as follows:

docker pull nvcr.io/nvidia/pytorch:22.05-py3

Replace 22.05 with a different string in the form yy.mm, where yy indicates the last two numbers of a calendar year, and mm indicates the month in two-digit numerical form, if you wish to pull a different version of the container.

The NGC PyTorch container ships with the Torch-TensorRT tutorial notebooks. Therefore, you can run the container and the notebooks therein without mounting the repo to the container. To do so, run

docker run --gpus=all --rm -it --net=host --ipc=host \
--ulimit memlock=-1 --ulimit stack=67108864 \
nvcr.io/nvidia/pytorch:22.05-py3 bash

If, however, you wish for your work in the notebooks to persist, use the -v flag to mount the repo to the container as follows:

docker run --gpus=all --rm -it -v $PWD:/Torch-TensorRT \
--net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
nvcr.io/nvidia/pytorch:22.05-py3 bash

b. Building a Torch-TensorRT container from source

Alternatively, to build the container from source, run

docker build -t torch_tensorrt -f ./docker/Dockerfile .

To run this container, enter the following command:

docker run --gpus=all --rm -it -v $PWD:/Torch-TensorRT \
--net=host --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
torch_tensorrt:latest bash

c. Running the notebooks inside the container

Within the docker interactive bash session, proceed to the notebooks. To use the notebooks which ship with the container, run

cd /workspace/examples/torch_tensorrt/notebooks

If, however, you mounted the repo to the container, run

cd /Torch-TensorRT/notebooks

Once you have entered the appropriate notebooks directory, start Jupyter with

jupyter notebook --allow-root --ip 0.0.0.0 --port 8888

And navigate a web browser to the IP address or hostname of the host machine at port 8888: http://[host machine]:8888

Use the token listed in the output from running the jupyter command to log in, for example:

http://[host machine]:8888/?token=aae96ae9387cd28151868fee318c3b3581a2d794f3b25c6b

Within the container, the notebooks themselves are located at /Torch-TensorRT/notebooks.

2. Notebook list