This repository has been archived by the owner on Oct 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
program_graph.py
965 lines (810 loc) · 34.5 KB
/
program_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
# Copyright (C) 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Creates ProgramGraphs from a program or function's AST.
A ProgramGraph represents a Python program or function. The nodes in a
ProgramGraph represent an Instruction (see instruction.py), an AST node, or a
piece of syntax from the program. The edges in a ProgramGraph represent the
relationships between these nodes.
"""
import codecs
import collections
import os
from absl import logging
import astunparse
from astunparse import unparser
import gast as ast
from python_graphs import control_flow
from python_graphs import data_flow
from python_graphs import instruction as instruction_module
from python_graphs import program_graph_dataclasses as pb
from python_graphs import program_utils
from python_graphs import unparser_patch # pylint: disable=unused-import
import six
from six.moves import builtins
from six.moves import filter
NEWLINE_TOKEN = '#NEWLINE#'
UNINDENT_TOKEN = '#UNINDENT#'
INDENT_TOKEN = '#INDENT#'
class ProgramGraph(object):
"""A ProgramGraph represents a Python program or function.
Attributes:
root_id: The id of the root ProgramGraphNode.
nodes: Maps from node id to the ProgramGraphNode with that id.
edges: A list of the edges (from_node.id, to_node.id, edge type) in the
graph.
child_map: Maps from node id to a list of that node's AST children node ids.
parent_map: Maps from node id to that node's AST parent node id.
neighbors_map: Maps from node id to a list of that node's neighboring edges.
ast_id_to_program_graph_node: Maps from an AST node's object id to the
corresponding AST program graph node, if it exists.
root: The root ProgramGraphNode.
"""
def __init__(self):
"""Constructs an empty ProgramGraph with no root."""
self.root_id = None
self.nodes = {}
# TODO(charlessutton): Seems odd to have Edge proto objects as part of the
# program graph object if node protos aren't. Consider a more consistent
# treatment.
self.edges = []
self.ast_id_to_program_graph_node = {}
self.child_map = collections.defaultdict(list)
self.parent_map = collections.defaultdict(lambda: None)
self.neighbors_map = collections.defaultdict(list)
# Accessors
@property
def root(self):
if self.root_id not in self.nodes:
raise ValueError('Graph has no root node.')
return self.nodes[self.root_id]
def all_nodes(self):
return self.nodes.values()
def get_node(self, obj):
"""Returns the node in the program graph corresponding to an object.
Arguments:
obj: Can be an integer, AST node, ProgramGraphNode, or program graph node
protobuf.
Raises:
ValueError: no node exists in the program graph matching obj.
"""
if isinstance(obj, six.integer_types) and obj in self.nodes:
return self.get_node_by_id(obj)
elif isinstance(obj, ProgramGraphNode):
# assert obj in self.nodes.values()
return obj
elif isinstance(obj, pb.Node):
return self.get_node_by_id(obj.id)
elif isinstance(obj, (ast.AST, list)):
return self.get_node_by_ast_node(obj)
else:
raise ValueError('Unexpected value for obj.', obj)
def get_node_by_id(self, obj):
"""Gets a ProgramGraph node for the given integer id."""
return self.nodes[obj]
def get_node_by_access(self, access):
"""Gets a ProgramGraph node for the given read or write."""
if isinstance(access, ast.Name):
return self.get_node(access)
else:
assert isinstance(access, tuple)
if isinstance(access[1], ast.Name):
return self.get_node(access[1])
else:
return self.get_node(access[2])
raise ValueError('Could not find node for access.', access)
def get_nodes_by_source(self, source):
"""Generates the nodes in the program graph containing the query source.
Args:
source: The query source.
Returns:
A generator of all nodes in the program graph with an Instruction with
source that includes the query source.
"""
module = ast.parse(source, mode='exec') # TODO(dbieber): Factor out 4 lines
# TODO(dbieber): Use statements beyond the first statement from source.
node = module.body[0]
# If the query source is an Expression, and the matching instruction matches
# the value field of that Expression, then the matching instruction is
# considered a match. This allows us to match subexpressions which appear in
# ast.Expr nodes in the query but not in the parent.
if isinstance(node, ast.Expr):
node = node.value
def matches_source(pg_node):
if pg_node.has_instruction():
return pg_node.instruction.contains_subprogram(node)
else:
return instruction_module.represent_same_program(pg_node.ast_node, node)
return filter(matches_source, self.nodes.values())
def get_node_by_source(self, node):
# We use min since nodes can contain each other and we want the most
# specific one.
return min(
self.get_nodes_by_source(node), key=lambda x: len(ast.dump(x.node)))
def get_nodes_by_function_name(self, name):
return filter(
lambda n: n.has_instance_of(ast.FunctionDef) and n.node.name == name,
self.nodes.values())
def get_node_by_function_name(self, name):
return next(self.get_nodes_by_function_name(name))
def get_node_by_ast_node(self, ast_node):
return self.ast_id_to_program_graph_node[id(ast_node)]
def contains_ast_node(self, ast_node):
return id(ast_node) in self.ast_id_to_program_graph_node
def get_ast_nodes_of_type(self, ast_type):
for node in six.itervalues(self.nodes):
if node.node_type == pb.NodeType.AST_NODE and node.ast_type == ast_type:
yield node
# TODO(dbieber): Unify selectors across program_graph and control_flow.
def get_nodes_by_source_and_identifier(self, source, name):
for pg_node in self.get_nodes_by_source(source):
for node in ast.walk(pg_node.node):
if isinstance(node, ast.Name) and node.id == name:
if self.contains_ast_node(node):
yield self.get_node_by_ast_node(node)
def get_node_by_source_and_identifier(self, source, name):
return next(self.get_nodes_by_source_and_identifier(source, name))
# Graph Construction Methods
def add_node(self, node):
"""Adds a ProgramGraphNode to this graph.
Args:
node: The ProgramGraphNode that should be added.
Returns:
The node that was added.
Raises:
ValueError: the node has already been added to this graph.
"""
assert isinstance(node, ProgramGraphNode), 'Not a ProgramGraphNode'
if node.id in self.nodes:
raise ValueError('Already contains node', self.nodes[node.id], node.id)
if node.ast_node is not None:
if self.contains_ast_node(node.ast_node):
raise ValueError('Already contains ast node', node.ast_node)
self.ast_id_to_program_graph_node[id(node.ast_node)] = node
self.nodes[node.id] = node
return node
def add_node_from_instruction(self, instruction):
"""Adds a node to the program graph."""
node = make_node_from_instruction(instruction)
return self.add_node(node)
def add_edge(self, edge):
"""Adds an edge between two nodes in the graph.
Args:
edge: The edge, a pb.Edge proto.
"""
assert isinstance(edge, pb.Edge), 'Not a pb.Edge'
self.edges.append(edge)
n1 = self.get_node_by_id(edge.id1)
n2 = self.get_node_by_id(edge.id2)
if edge.type == pb.EdgeType.FIELD: # An AST node.
self.child_map[edge.id1].append(edge.id2)
# TODO(charlessutton): Add the below sanity check back once Instruction
# updates are complete.
# pylint: disable=line-too-long
# other_parent_id = self.parent_map[edge.id2]
# if other_parent_id and other_parent_id != edge.id1:
# raise Exception('Node {} {} with two parents\n {} {}\n {} {}'
# .format(edge.id2, dump_node(self.get_node(edge.id2)),
# edge.id1, dump_node(self.get_node(edge.id1)),
# other_parent_id, dump_node(self.get_node(other_parent_id))))
# pylint: enable=line-too-long
self.parent_map[n2.id] = edge.id1
self.neighbors_map[n1.id].append((edge, edge.id2))
self.neighbors_map[n2.id].append((edge, edge.id1))
def remove_edge(self, edge):
"""Removes an edge from the graph.
If there are multiple copies of the same edge, only one copy is removed.
Args:
edge: The edge, a pb.Edge proto.
"""
self.edges.remove(edge)
n1 = self.get_node_by_id(edge.id1)
n2 = self.get_node_by_id(edge.id2)
if edge.type == pb.EdgeType.FIELD: # An AST node.
self.child_map[edge.id1].remove(edge.id2)
del self.parent_map[n2.id]
self.neighbors_map[n1.id].remove((edge, edge.id2))
self.neighbors_map[n2.id].remove((edge, edge.id1))
def add_new_edge(self, n1, n2, edge_type=None, field_name=None):
"""Adds a new edge between two nodes in the graph.
Both nodes must already be part of the graph.
Args:
n1: Specifies the from node of the edge. Can be any object type accepted
by get_node.
n2: Specifies the to node of the edge. Can be any object type accepted by
get_node.
edge_type: The type of edge. Can be any integer in the pb.Edge enum.
field_name: For AST edges, a string describing the Python AST field
Returns:
The new edge.
"""
n1 = self.get_node(n1)
n2 = self.get_node(n2)
new_edge = pb.Edge(
id1=n1.id, id2=n2.id, type=edge_type, field_name=field_name)
self.add_edge(new_edge)
return new_edge
# AST Methods
# TODO(charlessutton): Consider whether AST manipulation should be moved
# e.g., to a more general graph object.
def to_ast(self, node=None):
"""Convert the program graph to a Python AST."""
if node is None:
node = self.root
return self._build_ast(node=node, update_references=False)
def reconstruct_ast(self):
"""Reconstruct all internal ProgramGraphNode.ast_node references.
After calling this method, all nodes of type AST_NODE will have their
`ast_node` property refer to subtrees of a reconstructed AST object, and
self.ast_id_to_program_graph_node will contain only entries from this new
AST.
Note that only AST nodes reachable by fields from the root node will be
converted; this should be all of them but this is not checked.
"""
self.ast_id_to_program_graph_node.clear()
self._build_ast(node=self.root, update_references=True)
def _build_ast(self, node, update_references):
"""Helper method: builds an AST and optionally sets ast_node references.
Args:
node: Program graph node to build an AST for.
update_references: Whether to modify this node and all of its children so
that they point to the reconstructed AST node.
Returns:
AST node corresponding to the program graph node.
"""
if node.node_type == pb.NodeType.AST_NODE:
ast_node = getattr(ast, node.ast_type)()
adjacent_edges = self.neighbors_map[node.id]
for edge, other_node_id in adjacent_edges:
if other_node_id == edge.id1: # it's an incoming edge
continue
if edge.type == pb.EdgeType.FIELD:
child_id = other_node_id
child = self.get_node_by_id(child_id)
setattr(
ast_node, edge.field_name,
self._build_ast(node=child, update_references=update_references))
if update_references:
node.ast_node = ast_node
self.ast_id_to_program_graph_node[id(ast_node)] = node
return ast_node
elif node.node_type == pb.NodeType.AST_LIST:
list_items = {}
adjacent_edges = self.neighbors_map[node.id]
for edge, other_node_id in adjacent_edges:
if other_node_id == edge.id1: # it's an incoming edge
continue
if edge.type == pb.EdgeType.FIELD:
child_id = other_node_id
child = self.get_node_by_id(child_id)
unused_field_name, index = parse_list_field_name(edge.field_name)
list_items[index] = self._build_ast(
node=child, update_references=update_references)
ast_list = []
for index in six.moves.range(len(list_items)):
ast_list.append(list_items[index])
return ast_list
elif node.node_type == pb.NodeType.AST_VALUE:
return node.ast_value
else:
raise ValueError('This ProgramGraphNode does not correspond to a node in'
' an AST.')
def walk_ast_descendants(self, node=None):
"""Yields the nodes that correspond to the descendants of node in the AST.
Args:
node: the node in the program graph corresponding to the root of the AST
subtree that should be walked. If None, defaults to the root of the
program graph.
Yields:
All nodes corresponding to descendants of node in the AST.
"""
if node is None:
node = self.root
frontier = [node]
while frontier:
current = frontier.pop()
for child_id in reversed(self.child_map[current.id]):
frontier.append(self.get_node_by_id(child_id))
yield current
def parent(self, node):
"""Returns the AST parent of an AST program graph node.
Args:
node: A ProgramGraphNode.
Returns:
The node's AST parent, which is also a ProgramGraphNode.
"""
parent_id = self.parent_map[node.id]
if parent_id is None:
return None
else:
return self.get_node_by_id(parent_id)
def children(self, node):
"""Yields the (direct) AST children of an AST program graph node.
Args:
node: A ProgramGraphNode.
Yields:
The AST children of node, which are ProgramGraphNode objects.
"""
for child_id in self.child_map[node.id]:
yield self.get_node_by_id(child_id)
def neighbors(self, node, edge_type=None):
"""Returns the incoming and outgoing neighbors of a program graph node.
Args:
node: A ProgramGraphNode.
edge_type: If provided, only edges of this type are considered.
Returns:
The incoming and outgoing neighbors of node, which are ProgramGraphNode
objects but not necessarily AST nodes.
"""
adj_edges = self.neighbors_map[node.id]
if edge_type is None:
ids = list(tup[1] for tup in adj_edges)
else:
ids = list(tup[1] for tup in adj_edges if tup[0].type == edge_type)
return [self.get_node_by_id(id0) for id0 in ids]
def incoming_neighbors(self, node, edge_type=None):
"""Returns the incoming neighbors of a program graph node.
Args:
node: A ProgramGraphNode.
edge_type: If provided, only edges of this type are considered.
Returns:
The incoming neighbors of node, which are ProgramGraphNode objects but not
necessarily AST nodes.
"""
adj_edges = self.neighbors_map[node.id]
result = []
for edge, neighbor_id in adj_edges:
if edge.id2 == node.id:
if (edge_type is None) or (edge.type == edge_type):
result.append(self.get_node_by_id(neighbor_id))
return result
def outgoing_neighbors(self, node, edge_type=None):
"""Returns the outgoing neighbors of a program graph node.
Args:
node: A ProgramGraphNode.
edge_type: If provided, only edges of this type are considered.
Returns:
The outgoing neighbors of node, which are ProgramGraphNode objects but not
necessarily AST nodes.
"""
adj_edges = self.neighbors_map[node.id]
result = []
for edge, neighbor_id in adj_edges:
if edge.id1 == node.id:
if (edge_type is None) or (edge.type == edge_type):
result.append(self.get_node_by_id(neighbor_id))
return result
def dump_tree(self, start_node=None):
"""Returns a string representation for debugging."""
def dump_tree_recurse(node, indent, all_lines):
"""Create a string representation for a subtree."""
indent_str = ' ' + ('--' * indent)
node_str = dump_node(node)
line = ' '.join([indent_str, node_str, '\n'])
all_lines.append(line)
# output long distance edges
for edge, neighbor_id in self.neighbors_map[node.id]:
if (not is_ast_edge(edge) and not is_syntax_edge(edge) and
node.id == edge.id1):
type_str = edge.type.name
line = [indent_str, '--((', type_str, '))-->', str(neighbor_id), '\n']
all_lines.append(' '.join(line))
for child in self.children(node):
dump_tree_recurse(child, indent + 1, all_lines)
return all_lines
if start_node is None:
start_node = self.root
return ''.join(dump_tree_recurse(start_node, 0, []))
# TODO(charlessutton): Consider whether this belongs in ProgramGraph
# or in make_synthesis_problems.
def copy_with_placeholder(self, node):
"""Returns a new program graph in which the subtree of NODE is removed.
In the new graph, the subtree headed by NODE is replaced by a single
node of type PLACEHOLDER, which is connected to the AST parent of NODE
by the same edge type as in the original graph.
The new program graph will share structure (i.e. the ProgramGraphNode
objects) with the original graph.
Args:
node: A node in this program graph
Returns:
A new ProgramGraph object with NODE replaced
"""
descendant_ids = {n.id for n in self.walk_ast_descendants(node)}
new_graph = ProgramGraph()
new_graph.add_node(self.root)
new_graph.root_id = self.root_id
for edge in self.edges:
v1 = self.nodes[edge.id1]
v2 = self.nodes[edge.id2]
# Omit edges that are adjacent to the subtree rooted at `node` UNLESS this
# is the AST edge to the root of the subtree.
# In that case, create an edge to a new placeholder node
adj_bad_subtree = ((edge.id1 in descendant_ids) or
(edge.id2 in descendant_ids))
if adj_bad_subtree:
if edge.id2 == node.id and is_ast_edge(edge):
placeholder = ProgramGraphNode()
placeholder.node_type = pb.NodeType.PLACEHOLDER
placeholder.id = node.id
new_graph.add_node(placeholder)
new_graph.add_new_edge(v1, placeholder, edge_type=edge.type)
else:
# nodes on the edge have not been added yet
if edge.id1 not in new_graph.nodes:
new_graph.add_node(v1)
if edge.id2 not in new_graph.nodes:
new_graph.add_node(v2)
new_graph.add_new_edge(v1, v2, edge_type=edge.type)
return new_graph
def copy_subgraph(self, node):
"""Returns a new program graph containing only the subtree rooted at NODE.
All edges that connect nodes in the subtree are included, both AST edges
and other types of edges.
Args:
node: A node in this program graph
Returns:
A new ProgramGraph object whose root is NODE
"""
descendant_ids = {n.id for n in self.walk_ast_descendants(node)}
new_graph = ProgramGraph()
new_graph.add_node(node)
new_graph.root_id = node.id
for edge in self.edges:
v1 = self.nodes[edge.id1]
v2 = self.nodes[edge.id2]
# Omit edges that are adjacent to the subtree rooted at NODE
# UNLESS this is the AST edge to the root of the subtree.
# In that case, create an edge to a new placeholder node
good_edge = ((edge.id1 in descendant_ids) and
(edge.id2 in descendant_ids))
if good_edge:
if edge.id1 not in new_graph.nodes:
new_graph.add_node(v1)
if edge.id2 not in new_graph.nodes:
new_graph.add_node(v2)
new_graph.add_new_edge(v1, v2, edge_type=edge.type)
return new_graph
def is_ast_node(node):
return node.node_type == pb.NodeType.AST_NODE
def is_ast_edge(edge):
# TODO(charlessutton): Expand to enumerate edge types in gast.
return edge.type == pb.EdgeType.FIELD
def is_syntax_edge(edge):
return edge.type == pb.EdgeType.SYNTAX
def dump_node(node):
type_str = '[' + node.node_type.name + ']'
elements = [type_str, str(node.id), node.ast_type]
if node.ast_value:
elements.append(str(node.ast_value))
if node.syntax:
elements.append(str(node.syntax))
return ' '.join(elements)
def get_program_graph(program):
"""Constructs a program graph to represent the given program."""
program_node = program_utils.program_to_ast(program) # An AST node.
# TODO(dbieber): Refactor sections of graph building into separate functions.
program_graph = ProgramGraph()
# Perform control flow analysis.
control_flow_graph = control_flow.get_control_flow_graph(program_node)
# Add AST_NODE program graph nodes corresponding to Instructions in the
# control flow graph.
for control_flow_node in control_flow_graph.get_control_flow_nodes():
program_graph.add_node_from_instruction(control_flow_node.instruction)
# Add AST_NODE program graph nodes corresponding to AST nodes.
for ast_node in ast.walk(program_node):
if not program_graph.contains_ast_node(ast_node):
pg_node = make_node_from_ast_node(ast_node)
program_graph.add_node(pg_node)
root = program_graph.get_node_by_ast_node(program_node)
program_graph.root_id = root.id
# Add AST edges (FIELD). Also add AST_LIST and AST_VALUE program graph nodes.
for ast_node in ast.walk(program_node):
for field_name, value in ast.iter_fields(ast_node):
if isinstance(value, list):
pg_node = make_node_for_ast_list()
program_graph.add_node(pg_node)
program_graph.add_new_edge(
ast_node, pg_node, pb.EdgeType.FIELD, field_name)
for index, item in enumerate(value):
list_field_name = make_list_field_name(field_name, index)
if isinstance(item, ast.AST):
program_graph.add_new_edge(pg_node, item, pb.EdgeType.FIELD,
list_field_name)
else:
item_node = make_node_from_ast_value(item)
program_graph.add_node(item_node)
program_graph.add_new_edge(pg_node, item_node, pb.EdgeType.FIELD,
list_field_name)
elif isinstance(value, ast.AST):
program_graph.add_new_edge(
ast_node, value, pb.EdgeType.FIELD, field_name)
else:
pg_node = make_node_from_ast_value(value)
program_graph.add_node(pg_node)
program_graph.add_new_edge(
ast_node, pg_node, pb.EdgeType.FIELD, field_name)
# Add SYNTAX_NODE nodes. Also add NEXT_SYNTAX and LAST_LEXICAL_USE edges.
# Add these edges using a custom AST unparser to visit leaf nodes in preorder.
SyntaxNodeUnparser(program_node, program_graph)
# Perform data flow analysis.
analysis = data_flow.LastAccessAnalysis()
for node in control_flow_graph.get_enter_control_flow_nodes():
analysis.visit(node)
# Add control flow edges (CFG_NEXT).
for control_flow_node in control_flow_graph.get_control_flow_nodes():
instruction = control_flow_node.instruction
for next_control_flow_node in control_flow_node.next:
next_instruction = next_control_flow_node.instruction
program_graph.add_new_edge(
instruction.node, next_instruction.node,
edge_type=pb.EdgeType.CFG_NEXT)
# Add data flow edges (LAST_READ and LAST_WRITE).
for control_flow_node in control_flow_graph.get_control_flow_nodes():
# Start with the most recent accesses before this instruction.
last_accesses = control_flow_node.get_label('last_access_in').copy()
for access in control_flow_node.instruction.accesses:
# Extract the node and identifiers for the current access.
pg_node = program_graph.get_node_by_access(access)
access_name = instruction_module.access_name(access)
read_identifier = instruction_module.access_identifier(
access_name, 'read')
write_identifier = instruction_module.access_identifier(
access_name, 'write')
# Find previous reads.
for read in last_accesses.get(read_identifier, []):
read_pg_node = program_graph.get_node_by_access(read)
program_graph.add_new_edge(
pg_node, read_pg_node, edge_type=pb.EdgeType.LAST_READ)
# Find previous writes.
for write in last_accesses.get(write_identifier, []):
write_pg_node = program_graph.get_node_by_access(write)
program_graph.add_new_edge(
pg_node, write_pg_node, edge_type=pb.EdgeType.LAST_WRITE)
# Update the state to refer to this access as the most recent one.
if instruction_module.access_is_read(access):
last_accesses[read_identifier] = [access]
elif instruction_module.access_is_write(access):
last_accesses[write_identifier] = [access]
# Add COMPUTED_FROM edges.
for node in ast.walk(program_node):
if isinstance(node, ast.Assign):
for value_node in ast.walk(node.value):
if isinstance(value_node, ast.Name):
# TODO(dbieber): If possible, improve precision of these edges.
for target in node.targets:
program_graph.add_new_edge(
target, value_node, edge_type=pb.EdgeType.COMPUTED_FROM)
# Add CALLS, FORMAL_ARG_NAME and RETURNS_TO edges.
for node in ast.walk(program_node):
if isinstance(node, ast.Call):
if isinstance(node.func, ast.Name):
# TODO(dbieber): Use data flow analysis instead of all function defs.
func_defs = list(program_graph.get_nodes_by_function_name(node.func.id))
# For any possible last writes that are a function definition, add the
# formal_arg_name and returns_to edges.
if not func_defs:
# TODO(dbieber): Add support for additional classes of functions,
# such as attributes of known objects and builtins.
if node.func.id in dir(builtins):
message = 'Function is builtin.'
else:
message = 'Cannot statically determine the function being called.'
logging.debug('%s (%s)', message, node.func.id)
for func_def in func_defs:
fn_node = func_def.node
# Add calls edge from the call node to the function definition.
program_graph.add_new_edge(node, fn_node, edge_type=pb.EdgeType.CALLS)
# Add returns_to edges from the function's return statements to the
# call node.
for inner_node in ast.walk(func_def.node):
# TODO(dbieber): Determine if the returns_to should instead go to
# the next instruction after the Call node instead.
if isinstance(inner_node, ast.Return):
program_graph.add_new_edge(
inner_node, node, edge_type=pb.EdgeType.RETURNS_TO)
# Add formal_arg_name edges from the args of the Call node to the
# args in the FunctionDef.
for index, arg in enumerate(node.args):
formal_arg = None
if index < len(fn_node.args.args):
formal_arg = fn_node.args.args[index]
elif fn_node.args.vararg:
# Since args.vararg is a string, we use the arguments node.
# TODO(dbieber): Use a node specifically for the vararg.
formal_arg = fn_node.args
if formal_arg is not None:
# Note: formal_arg can be an AST node or a string.
program_graph.add_new_edge(
arg, formal_arg, edge_type=pb.EdgeType.FORMAL_ARG_NAME)
else:
# TODO(dbieber): If formal_arg is None, then remove all
# formal_arg_name edges for this FunctionDef.
logging.debug('formal_arg is None')
for keyword in node.keywords:
name = keyword.arg
formal_arg = None
for arg in fn_node.args.args:
if isinstance(arg, ast.Name) and arg.id == name:
formal_arg = arg
break
else:
if fn_node.args.kwarg:
# Since args.kwarg is a string, we use the arguments node.
# TODO(dbieber): Use a node specifically for the kwarg.
formal_arg = fn_node.args
if formal_arg is not None:
program_graph.add_new_edge(
keyword.value, formal_arg,
edge_type=pb.EdgeType.FORMAL_ARG_NAME)
else:
# TODO(dbieber): If formal_arg is None, then remove all
# formal_arg_name edges for this FunctionDef.
logging.debug('formal_arg is None')
else:
# TODO(dbieber): Add a special case for Attributes.
logging.debug(
'Cannot statically determine the function being called. (%s)',
astunparse.unparse(node.func).strip())
return program_graph
class SyntaxNodeUnparser(unparser.Unparser):
"""An Unparser class helpful for creating Syntax Token nodes for fn graphs."""
def __init__(self, ast_node, graph):
self.graph = graph
self.current_ast_node = None # The AST node currently being unparsed.
self.last_syntax_node = None
self.last_lexical_uses = {}
self.last_indent = 0
with codecs.open(os.devnull, 'w', encoding='utf-8') as devnull:
super(SyntaxNodeUnparser, self).__init__(ast_node, file=devnull)
def dispatch(self, ast_node):
"""Dispatcher function, dispatching tree type T to method _T."""
tmp_ast_node = self.current_ast_node
self.current_ast_node = ast_node
super(SyntaxNodeUnparser, self).dispatch(ast_node)
self.current_ast_node = tmp_ast_node
def fill(self, text=''):
"""Indent a piece of text, according to the current indentation level."""
text_with_whitespace = NEWLINE_TOKEN
if self.last_indent > self._indent:
text_with_whitespace += UNINDENT_TOKEN * (self.last_indent - self._indent)
elif self.last_indent < self._indent:
text_with_whitespace += INDENT_TOKEN * (self._indent - self.last_indent)
self.last_indent = self._indent
text_with_whitespace += text
self._add_syntax_node(text_with_whitespace)
super(SyntaxNodeUnparser, self).fill(text)
def write(self, text):
"""Append a piece of text to the current line."""
if isinstance(text, ast.AST): # text may be a Name, Tuple, or List node.
return self.dispatch(text)
self._add_syntax_node(text)
super(SyntaxNodeUnparser, self).write(text)
def _add_syntax_node(self, text):
text = text.strip()
if not text:
return
syntax_node = make_node_from_syntax(six.text_type(text))
self.graph.add_node(syntax_node)
self.graph.add_new_edge(
self.current_ast_node, syntax_node, edge_type=pb.EdgeType.SYNTAX)
if self.last_syntax_node:
self.graph.add_new_edge(
self.last_syntax_node, syntax_node, edge_type=pb.EdgeType.NEXT_SYNTAX)
self.last_syntax_node = syntax_node
def _Name(self, node):
if node.id in self.last_lexical_uses:
self.graph.add_new_edge(
node,
self.last_lexical_uses[node.id],
edge_type=pb.EdgeType.LAST_LEXICAL_USE)
self.last_lexical_uses[node.id] = node
super(SyntaxNodeUnparser, self)._Name(node)
class ProgramGraphNode(object):
"""A single node in a Program Graph.
Corresponds to either a SyntaxNode or an Instruction (as in a
ControlFlowGraph).
Attributes:
node_type: One of the node types from pb.NodeType.
id: A unique id for the node.
instruction: If applicable, the corresponding Instruction.
ast_node: If available, the AST node corresponding to the ProgramGraphNode.
ast_type: If available, the type of the AST node, as a string.
ast_value: If available, the primitive Python value corresponding to the
node.
syntax: For SYNTAX_NODEs, the syntax information stored in the node.
node: If available, the AST node for this program graph node or its
instruction.
"""
def __init__(self):
self.node_type = None
self.id = None
self.instruction = None
self.ast_node = None
self.ast_type = ''
self.ast_value = ''
self.syntax = ''
def has_instruction(self):
return self.instruction is not None
def has_instance_of(self, t):
"""Whether the node's instruction is an instance of type `t`."""
if self.instruction is None:
return False
return isinstance(self.instruction.node, t)
@property
def node(self):
if self.ast_node is not None:
return self.ast_node
if self.instruction is None:
return None
return self.instruction.node
def __repr__(self):
return str(self.id) + ' ' + str(self.ast_type)
def make_node_from_syntax(text):
node = ProgramGraphNode()
node.node_type = pb.NodeType.SYNTAX_NODE
node.id = program_utils.unique_id()
node.syntax = text
return node
def make_node_from_instruction(instruction):
"""Creates a ProgramGraphNode corresponding to an existing Instruction.
Args:
instruction: An Instruction object.
Returns:
A ProgramGraphNode corresponding to that instruction.
"""
ast_node = instruction.node
node = make_node_from_ast_node(ast_node)
node.instruction = instruction
return node
def make_node_from_ast_node(ast_node):
"""Creates a program graph node for the provided AST node.
This is only called when the AST node doesn't already correspond to an
Instruction in the program's control flow graph.
Args:
ast_node: An AST node from the program being analyzed.
Returns:
A node in the program graph corresponding to the AST node.
"""
node = ProgramGraphNode()
node.node_type = pb.NodeType.AST_NODE
node.id = program_utils.unique_id()
node.ast_node = ast_node
node.ast_type = type(ast_node).__name__
return node
def make_node_for_ast_list():
node = ProgramGraphNode()
node.node_type = pb.NodeType.AST_LIST
node.id = program_utils.unique_id()
return node
def make_node_from_ast_value(value):
"""Creates a ProgramGraphNode for the provided value.
`value` is a primitive value appearing in a Python AST.
For example, the number 1 in Python has AST Num(n=1). In this, the value '1'
is a primitive appearing in the AST. It gets its own ProgramGraphNode with
node_type AST_VALUE.
Args:
value: A primitive value appearing in an AST.
Returns:
A ProgramGraphNode corresponding to the provided value.
"""
node = ProgramGraphNode()
node.node_type = pb.NodeType.AST_VALUE
node.id = program_utils.unique_id()
node.ast_value = value
return node
def make_list_field_name(field_name, index):
return '{}:{}'.format(field_name, index)
def parse_list_field_name(list_field_name):
field_name, index = list_field_name.split(':')
index = int(index)
return field_name, index