-
Notifications
You must be signed in to change notification settings - Fork 0
/
video_pipeline.py
1168 lines (916 loc) · 54.7 KB
/
video_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import cv2
import matplotlib.pyplot as plt
import pickle
import glob
import re
import os.path
import time
from matplotlib.lines import Line2D
from collections import deque
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from moviepy.editor import VideoFileClip
from statemachine import StateMachine
from matplotlib.patches import Polygon
image = cv2.imread('../examples/snap_golf.png')
settings = pickle.load(open("../pickle_files/project_data/fianal_params_for_lane_lines.pickle", "rb"))
'''
code for the state machine, Limited to the presented course material so far!
'''
def img_proc(img):
return img
input_string = '../project_videos/project_video_*.mp4'
foldername = re.search(r'.+\/', input_string).group()
outdir = foldername+'processed/'
timestamp = time.strftime("%Y%m%d-%H%M%S")
outdir += timestamp
if not os.path.isdir(outdir):
print("creating folder: ", outdir)
os.makedirs(outdir)
# create a class for the lane finder
class LaneFinder(StateMachine):
'''
@brief: Initializer for lane finder relies on input to set itself up
@input: A dictionary containing essential parameters, generated by the other tools
'''
def __init__(self, params):
super().__init__()
self.mtx = params['mtx_'] # camera matrix
self.dist = params['dist_'] # distortion coefficents
self.theta_min = params['theta_min'] # sobel filter x derivative low threshold
self.theta_max = params['theta_max'] # sobel filter x derivative high threshold
self.sat_lo_threshold = params['saturation_min'] # HSL saturation Low threshold
self.sat_hi_threshold = params['saturation_max'] # HSL sat high thresh
self.M_perspective = params['M_perspective_transform'] # prespective tf for bird's eye view
self.HUE1_low = params['hue1_low'] # hue range 1 low threshold
self.HUE1_hi = params['hue1_high']
self.HUE2_low = params['hue2_low']
self.HUE2_hi = params['hue2_high']
self.warped_img_width = params['dst_img_width']
self.warped_img_height = params['dst_img_height']
self.warp_x_expand_ = 100 # additional x space in the warped image (adjustments to warping)
self.warp_y_expand_ = 0
self.slice_vertical_offset = 0 # tweak slice height i.e when the road is very bendy
self.warp_dif_shown = False;
self.use_previous_reference = False
# DWA params
self.nwindows = 9 # maybe 9 is two small. hmm.. )
self.margin = 40
self.minpix = 15
# Polynomal params
self.left_fit_current = None
self.right_fit_current = None
self.midpoint = None
self.slice_width = None
self.useDWA = False
self.consecutive_total_failure_count = 0;
self.consecutive_total_failure_count_limit = 50; # todo: cure magic number
self.coefficent_buffer_left = deque(maxlen= 6) # buffer to hold second order coefficents for filtering out outliers
self.coefficent_buffer_right = deque(maxlen= 6) # buffer to hold second order coefficents for filtering out outliers
self.coef_0_max_deviation = 1e-5 # Ballpark figures to detet lane deviation
self.coef_1_max_deviation = 0.13 #
self.coef_2_max_deviation = 40 #
# PIX to m, mappings
self.ym_per_pix = 3.0/210 # meters per pixel in y dimension (for perspective transformed image)
self.xm_per_pix = 3.7/259 # meters per pixel in x dimension (for perspective transformed image)
self.lanewidth_estimated_pixels = 210 # this is a guestimation
minimum_lookahead_m = 5
self.minimum_lookahead_pixels = minimum_lookahead_m/self.ym_per_pix
self.max_lane_pixels = 30000
self.left_fit_m = None
self.right_fit_m = None
self.sobel_kernel_size = 15
self.m_ppt_inv = np.linalg.pinv(self.M_perspective)
self.derivative_view_thresh = 1
self.saturation_threshold = 1
self.last_dwa_hits = 0
self.last_window_x = np.empty((self.nwindows, 2), dtype=int) # leftx_current and rightx_current
self.window_mix_ratio = 0.5
self.fig, (self.ax) = plt.subplots(1, 1, figsize=(8,14))
self.ax.margins(x=0)
self.hist_x = [];
self.hist_y = [];
# Text stuff
self.font = cv2.FONT_HERSHEY_SIMPLEX
self.fontScale = 1
self.debugFontScale = 0.5
self.fontColor = (255,255,255)
self.lineType_ = 2
linewidth = 3
linecolor = 'yellow'
self.left_lane = Line2D(np.empty((0, 1)), np.empty((0, 1)), lw=linewidth, color=linecolor)
self.right_lane = Line2D(np.empty((0, 1)), np.empty((0, 1)), lw=linewidth, color=linecolor)
self.ax.add_line(self.right_lane)
self.ax.add_line(self.left_lane)
self.im2 = self.ax.imshow(np.empty((0, 2)), cmap='gray')
self.lane_area_polygon = Polygon(np.empty((0, 2)), facecolor=None, fill=False, alpha=0.4, hatch='//', color='greenyellow')
placeholder_image = np.zeros(shape=[self.warped_img_width, self.warped_img_height,3], dtype=np.uint8)
self.imsrc = self.ax.imshow(placeholder_image)
# Good fits
self.last_good_left_fit = None
self.last_good_right_fit = None
self.baseline_landewidth_pixels = None
self.last_succesful_lane_polygon = None
self.failures_since_last_polygon = None
self.failures_since_last_polygon_max = 15
# Filtered coefs
self.left_fit_filtered = None
self.right_fit_filtered = None
# Error counting
self.left_lane_errors = 0
self.right_lane_errors = 0
self.entry_run_next = 0 # Which methoud should I call next!, [0 - DWA | 1 - proximitiy fit | 2 - terminate] @todo: use signal to do exit stuff
self.entry_fatal_error_count = 0 # Consecutive DWA failures to produce plygon
self.entry_fatal_error_count_limit = 20
self.entry_proxi_fit_misses_count = 0 # Proximity fit had to queue DWA occurences
self.entry_proxi_fit_misses_count_limit = 300
self.entry_proxi_fit_recovery_by_dwa_count = 0 # Proxy fit resumed after DWA
self.entry_dwa_next_frame_recovery = 0 # DWA recovered by reciving a good frame
self.entry_total_error_count = 0
self.entry_total_error_count_limit = 50
'''
@brief: Handler for preparing images, All input images need to be undistorted,
Perspective transformed and cropped
@input:image ,BGR input image
'''
def prepare_image(self, image):
'''
@todo: to save processing 3 Channels grayscale first
@totest: undistort first and then HLS and convert_to gray
'''
undistorted_img = cv2.undistort(image, self.mtx, self.dist, None, self.mtx)
gray = cv2.cvtColor(undistorted_img, cv2.COLOR_RGB2GRAY);
hls = cv2.cvtColor(undistorted_img, cv2.COLOR_RGB2HLS)
H_CH = hls[:,:,0]
S_CH = hls[:,:,2]
HUE_filtered = np.zeros_like(H_CH)
HUE_filtered[((H_CH >= self.HUE1_low) & (H_CH <= self.HUE1_hi)) | ((H_CH >= self.HUE2_low) & (H_CH <= self.HUE2_hi ))] = 255
norm_gray = cv2.normalize(gray, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_64F)
blurred_gray = cv2.GaussianBlur(norm_gray, (3,3), cv2.BORDER_DEFAULT)
sobel_x = cv2.Sobel(blurred_gray, cv2.CV_64F, 1, 0, ksize=self.sobel_kernel_size)
sobel_y = cv2.Sobel(blurred_gray, cv2.CV_64F, 0, 1, ksize=self.sobel_kernel_size)
abs_sobel_x = np.absolute(sobel_y)
abs_sobel_y = np.absolute(sobel_x)
scaled_sobel_x = ((255*abs_sobel_x)/np.max(abs_sobel_x)) # hope this gets beautifully optimised
scaled_sobel_y = ((255*abs_sobel_y)/np.max(abs_sobel_y))
arct_img = np.arctan2(scaled_sobel_y, scaled_sobel_x)
'''
Do the color and gradient opeations without warping the image, howerver it may be intersting to see what happens when we
do gradient operatios on a warped image. (this is a potential @todo)
'''
filtered_gradient = np.zeros_like(arct_img)
filtered_gradient[(arct_img >= self.theta_min*np.pi/180) & (arct_img <= self.theta_max*np.pi/180)] = self.derivative_view_thresh ;
s_binary_t = np.zeros_like(S_CH)
s_binary_t[((S_CH >= self.sat_lo_threshold) & (S_CH <= self.sat_hi_threshold))] = 1
combined_hue_sat_grad_binary = np.zeros_like(arct_img)
combined_hue_sat_grad_binary[(HUE_filtered == 255) & (filtered_gradient == self.derivative_view_thresh) & (s_binary_t == self.saturation_threshold)] = 255
'''
Do the warping and croppping the ROI
'''
warped_width = self.warp_x_expand_ + self.warped_img_width if (np.shape(combined_hue_sat_grad_binary)[1] > self.warp_x_expand_ + self.warped_img_width) else np.shape(combined_hue_sat_grad_binary)[1]
warped_height = self.warp_y_expand_ + self.warped_img_height if (np.shape(combined_hue_sat_grad_binary)[0] > self.warp_y_expand_ + self.warped_img_height) else np.shape(combined_hue_sat_grad_binary)[0]
self.hist_x = np.arange(0, warped_width, 1)
self.slice_width = warped_width
if((warped_width - self.warped_img_width is not 0 or warped_height - self.warped_img_height is not 0) and self.warp_dif_shown is False):
print("modified | warped_width = ", warped_width, ", warped_height = ", warped_height, " | orignal self.warped_img_width ", self.warped_img_width, ", self.warped_img_height = ", self.warped_img_height);
self.warp_dif_shown = True;
warped = cv2.warpPerspective(combined_hue_sat_grad_binary, self.M_perspective, (warped_width, warped_height));
warp_slice = warped[self.slice_vertical_offset:, :]
self.midpoint = np.int(warp_slice.shape[1]//2)
norm_warped = warp_slice/255;
hist = np.sum(warp_slice, axis=0);
return [norm_warped, hist, undistorted_img] # warped for processing, undistorted for backprojection
def filter_outliers(self, inputarray, cutoff_threshold):
deviation = np.abs(inputarray - np.median(inputarray))
median_deviation = np.median(deviation)
devdev = deviation/median_deviation if np.abs(median_deviation) > 0 else 0
return inputarray[devdev > cutoff_threshold]
def find_fit(self, slice_length, starting_row, leftx, lefty, rightx, righty ):
ploty = None
left_fit = None
left_fitx = None
right_fit = None
right_fitx = None
rightx_ok = False
leftx_ok = False
y_eval = None
left_r_contrib = 0
right_r_contrib = 0
left_x = 0;
right_x = 0;
avg_radius_m = None
debugmsg = "Debug:\n" # debug message for the currnt frame
lefty_ = np.asarray(lefty)
leftx_ = np.asarray(leftx)
righty_ = np.asarray(righty)
rightx_ = np.asarray(rightx)
lefty_clipped = lefty_[lefty_ > starting_row]
leftx_clipped = leftx_[lefty_ > starting_row]
righty_clipped = righty_[righty_ > starting_row]
rightx_clipped = rightx_[righty_ > starting_row]
do_left = True if np.size(leftx_clipped) > self.minpix else False
do_right = True if np.size(rightx_clipped) > self.minpix else False
debugmsg = "%sStarting row = %d\n" %(debugmsg, starting_row)
'''
in the case of an error (assuming it's a sudden effect from the norm we give some leeway)
'''
try:
if do_left == True or do_right == True:
ploty = np.linspace(starting_row, slice_length - 1, slice_length - starting_row) # @todo: [save compute] doesn't have to be this many
if do_left == True :
left_fit = np.polyfit(lefty_clipped, leftx_clipped, 2) # @idea: merge with last succesful fit to get better coeffs
if do_right == True:
right_fit = np.polyfit(righty_clipped, rightx_clipped, 2)
except TypeError:
print("Polyfit failed")
if self.last_good_left_fit is None:
self.last_good_left_fit = left_fit
if self.last_good_right_fit is None:
self.last_good_right_fit = right_fit
'''
He we do a rudementary check to see if the estmates are any good, Throughout the code there are several
checks probing varying depths via different approaches i.e. coeffcents, baselne lane width etc., this is because the code kept growing
as I kept experimenting with it.
I belive that there is definetely an oppurtunity to consoldate these many tests
@todo: Consolidate tests
'''
if do_left == True or do_right == True:
y_eval = ploty[-1] # bottom position
y_eval2 = ploty[-100] # 100 px from bottom, @todo heal magic number
y_eval_m = y_eval * self.ym_per_pix;
if do_left == True :
left_x = left_fit[0]*y_eval**2 + left_fit[1] * y_eval + left_fit[2]
left_x2 = left_fit[0]*y_eval2**2 + left_fit[1] * y_eval2 + left_fit[2]
left_x1_ok = True if left_x >= 0 and left_x < self.midpoint else False
left_x2_ok = True if left_x2 >= 0 and left_x2 < self.midpoint else False
leftx_ok = True if left_x1_ok == True and left_x2_ok == True else False # @todo: modify for better estimates
do_left = leftx_ok
if do_right == True:
right_x = right_fit[0]*y_eval**2 + right_fit[1] * y_eval + right_fit[2]
right_x2 = right_fit[0]*y_eval2**2 + right_fit[1] * y_eval2 + right_fit[2]
right_x1_ok = True if right_x > self.midpoint and right_x < self.slice_width else False
right_x2_ok = True if right_x2 > self.midpoint and right_x2 < self.slice_width else False
rightx_ok = True if right_x1_ok == True and right_x2_ok == True else False
do_right = rightx_ok
'''
here we check if the coeffcents are stable , we buffer them and check latest addition against the median value,
Note: I omitted the first coefficent from this test because it seems to change onla a lttle and my experiments showed that
I may get away by just using the last two.
'''
if leftx_ok:
self.coefficent_buffer_left.append(left_fit) # add to right side
l_coefs_buffer = np.asarray(self.coefficent_buffer_left)
l_coefs_median = np.median(l_coefs_buffer, axis=0)
l_coefs_dev = l_coefs_buffer[-1]- l_coefs_median # compare the last entry
comment = "STABLE"
if np.abs(l_coefs_dev[1]) > self.coef_1_max_deviation or np.abs(l_coefs_dev[2]) > self.coef_2_max_deviation:
leftx_ok = False
do_left = False
comment = "UNSTABLE WARNING"
self.coefficent_buffer_left.pop() # remove from the right
debugmsg = "%sLeft deviation = %f %f %f %s\n" %(debugmsg, l_coefs_dev[0], l_coefs_dev[1], l_coefs_dev[2], comment)
if rightx_ok:
self.coefficent_buffer_right.append(right_fit)
r_coefs_buffer = np.asarray(self.coefficent_buffer_right)
r_coefs_median = np.median(r_coefs_buffer, axis=0)
r_coefs_dev = r_coefs_buffer[-1] - r_coefs_median # compare the last entry
comment = "STABLE "
if np.abs(r_coefs_dev[1]) > self.coef_1_max_deviation or np.abs(r_coefs_dev[2]) > self.coef_2_max_deviation:
rightx_ok = False
do_right =False
comment = "UNSTABLE WARNING"
self.coefficent_buffer_right.pop()
debugmsg = "%sRight deviation = %f %f %f %s\n" %(debugmsg, r_coefs_dev[0], r_coefs_dev[1], r_coefs_dev[2], comment)
left_fit_dwa = None
left_fitx_dwa = None
right_fit_dwa = None
right_fitx_dwa = None
'''
@todo Note: This maybe redundant or even detrimental, check for necessity and sufficency!!
'''
if self.useDWA == True and (leftx_ok or rightx_ok):
'''
If one of the lines are stable
'''
if leftx_ok == False and leftx_clipped.any() and righty_clipped.any():
'''
rely on DWA produced latest data only
'''
left_fit_dwa = np.polyfit(lefty_clipped, leftx_clipped, 2) # @idea: merge with last succesful fit to get better coeffs
left_fitx_dwa = left_fit[0]*ploty**2 + left_fit[1] * ploty + left_fit[2]
if rightx_ok == False and rightx_clipped.any() and righty_clipped.any():
right_fit_dwa = np.polyfit(righty_clipped, rightx_clipped, 2) # @idea: merge with last succesful fit to get better coeffs
right_fitx_dwa = right_fit[0]*ploty**2 + right_fit[1] * ploty + right_fit[2]
'''
if both are ok we check the coefficents and the pixel lane width to make sure they are resonable
'''
if do_left == True and do_right == True :
Coef_diff = right_fit - left_fit
'''
if lanes are parallel first two should be similar
'''
debugmsg = "%sC0-diff = %.6f, C1-diff = %.3f, C2-diff = %3.1f\n" % (debugmsg, Coef_diff[0], Coef_diff[1], Coef_diff[2])
if self.left_fit_filtered is None: # Also worth checking for filterred age
self.left_fit_filtered = left_fit
if self.right_fit_filtered is None:
self.right_fit_filtered = right_fit
'''
Through visual observation we can see that
if the second coeffcicent is greater than 0.1 and thrrd greater then 40 we are in danger
at this point if the other lane is good we can have a hint about the correct shape goto lane rescue
Note: here PROXI-FIT consecutive misses count only resets when proximity fit returns a polygon
'''
debugmsg = "%sbaseline lane width = %1.2f, PROXI-FIT consecutive misses count = %d\n" % (debugmsg, self.baseline_landewidth_pixels * self.xm_per_pix if self.baseline_landewidth_pixels is not None else -1., self.entry_proxi_fit_misses_count)
'''
Now 'do_left' and 'do_right' have a new additional meaning by adding a sense of temporal stability to that, based on this if one is good and the other is bad we can try creating the bad one based on the good one.
What is happening below is a using the stable values to rescue the one that seems off.
I have omitted the DWA mod from this as it is supposed to be a fresh look in to the picture but this may be detrimantal in cases where DWA assumoptions and actual conditions are not matching, for example
in the hard-challenge video the lanes are winding so hard that in instances some frames only have a fraction of one lane. Therefore to go into such a frame a naive system like ours needs a very good prior state understanding.
which means unlike humans who benifit from a better view, better information density and superior compute and can recover from any state we need to recognize we can launch from a subset of perspectives in a subset of lighting conditions.
'''
# if (do_left == True or do_right == True) and self.useDWA == False and self.baseline_landewidth_pixels is not None: # @todo: heal magic number
if (do_left == True or do_right == True) and self.baseline_landewidth_pixels is not None:
if do_left == False and do_right == True:
'''
if there is a good right fit use that
'''
left_fit = np.array([right_fit[0], right_fit[1] , right_fit[2] - self.baseline_landewidth_pixels])
self.coefficent_buffer_left.append(left_fit)
debugmsg = "%sFixed: LEFT, Width = %d px \n" % (debugmsg, self.baseline_landewidth_pixels)
leftx_ok = True
do_left = True
elif do_right == False and do_left == True:
'''
if there is a good left fit use that
'''
right_fit = np.array([left_fit[0], left_fit[1] , left_fit[2] + self.baseline_landewidth_pixels])
self.coefficent_buffer_right.append(right_fit)
debugmsg = "%sFixed: RIGHT, Width = %d px \n" % (debugmsg, self.baseline_landewidth_pixels)
rightx_ok = True
do_right = True
elif do_right == False and do_left == False and self.consecutive_total_failure_count < self.consecutive_total_failure_count_limit:
'''
Both lanes are approximated Rely on the past, @todo: (tothink) to be more accurate may need momentum taken into account
'''
ploty = np.linspace(starting_row, slice_length - 1, slice_length - starting_row) # @todo: duplicates, bunch into convenience method!!
right_fit = self.last_good_right_fit; # @todo: Check for NoneType/Availability
left_fit = self.last_good_left_fit;
self.coefficent_buffer_left.append(left_fit)
self.coefficent_buffer_right.append(right_fit)
self.consecutive_total_failure_count = self.consecutive_total_failure_count + 1 if self.consecutive_total_failure_count < self.consecutive_total_failure_count_limit else self.consecutive_total_failure_count_limit
leftx_ok = True
rightx_ok = True
debugmsg = "%sFixed: BOTH SUDES | consecutive total faliurs %d/%d limit \n" % (debugmsg, self.consecutive_total_failure_count, self.consecutive_total_failure_count_limit)
debugmsg = "%sDO LEFT = %d, DO RIGHT = %d\n" % (debugmsg, do_left, do_right)
if do_left == True or do_right == True:
y_eval = ploty[-1]
y_eval_m = y_eval * self.ym_per_pix;
'''
Calculating function payload
'''
if leftx_ok:
self.last_good_left_fit = np.copy(left_fit)
self.left_fit_current = left_fit;
if self.coefficent_buffer_left is not None:
self.left_fit_filtered = np.mean(self.coefficent_buffer_left, axis=0)
left_fitx = self.left_fit_filtered[0]*ploty**2 + self.left_fit_filtered[1] * ploty + self.left_fit_filtered[2]
self.left_lane.set_data(left_fitx, np.flipud(ploty) - starting_row )
self.left_fit_m = np.copy(self.left_fit_filtered)
self.left_fit_m[0] = self.left_fit_m[0] * self.xm_per_pix * (1/self.ym_per_pix)**2
self.left_fit_m[1] = self.left_fit_m[1] * self.xm_per_pix/self.ym_per_pix
self.left_fit_m[2] = self.left_fit_m[2] * self.xm_per_pix
self.coefficent_buffer_left.append(self.left_fit_filtered)
left_curverad_m = np.sqrt((1 + (2*self.left_fit_m[0]*y_eval_m + self.left_fit_m[1])**2)**3)/np.fabs(2*self.left_fit_m[0])
left_r_contrib = left_curverad_m/2;
left_x = self.left_fit_filtered[0]*y_eval**2 + self.left_fit_filtered[1] * y_eval + self.left_fit_filtered[2]
if rightx_ok:
self.last_good_right_fit = np.copy(right_fit)
self.right_fit_current = right_fit;
if self.coefficent_buffer_right is not None:
self.right_fit_filtered = np.mean(self.coefficent_buffer_right, axis=0)
right_fitx = self.right_fit_filtered[0]*ploty**2 + self.right_fit_filtered[1] * ploty + self.right_fit_filtered[2]
self.right_lane.set_data(right_fitx, np.flipud(ploty) - starting_row)
self.right_fit_m = np.copy(self.right_fit_filtered)
self.right_fit_m[0] = self.right_fit_m[0] * self.xm_per_pix * (1/self.ym_per_pix)**2
self.right_fit_m[1] = self.right_fit_m[1] * self.xm_per_pix/self.ym_per_pix
self.right_fit_m[2] = self.right_fit_m[2] * self.xm_per_pix
self.coefficent_buffer_right.append(self.right_fit_filtered)
right_curverad_m = np.sqrt((1 + (2*self.right_fit_m[0]*y_eval_m + self.right_fit_m[1])**2)**3)/np.fabs(2*self.right_fit_m[0])
right_r_contrib = right_curverad_m/2;
right_x = self.right_fit_filtered[0]*y_eval**2 + self.right_fit_filtered[1] * y_eval + self.right_fit_filtered[2]
if y_eval is not None:
avg_radius_m = left_r_contrib + right_r_contrib;
lane_centre = (left_x + right_x) // 2;
vehicle_offset = (self.midpoint - lane_centre) *1.
vehicle_offset_m_signed = vehicle_offset * self.xm_per_pix * 1.
if self.useDWA == True and (leftx_ok or rightx_ok):
if leftx_ok == False:
left_fit = left_fit_dwa
left_fitx = left_fitx_dwa
if rightx_ok == False:
right_fit = right_fit_dwa
right_fitx = right_fitx_dwa
return ploty, left_fitx, right_fitx, vehicle_offset_m_signed, avg_radius_m, leftx_ok, rightx_ok, self.left_fit_filtered, self.right_fit_filtered, debugmsg
'''
This is common to both dwa and polynomial proximity fit, once two coordinate vectos had been identified we can look for a fit
then we caluclate the radiuses and the offsets from centre
'''
def fit_poly(self, slice_length, leftx, lefty, rightx, righty):
ploty = None
left_fitx = None
right_fitx = None
slice_start__pixel_row = 0
max_tries = 3
tries = 0
while tries < max_tries:
ploty, left_fitx, right_fitx, vehicle_offset_m_signed, avg_radius_m, leftx_ok, rightx_ok, left_fit, right_fit, debugmsg = self.find_fit(slice_length,slice_start__pixel_row, leftx, lefty, rightx, righty)
'''
to make sure lane lines do not get distorted away we will force the polynomials to go throgh y_bottom
if this is not satisfied we will reduce the gain of the blending, maybe it's a good idea to define a max curve we can handle
'''
update_lane_polygon = False
img_lane_poly_xy = []
if leftx_ok == True and rightx_ok == True:
'''
now we take the lane width to examine if it has a consistant width
'''
width = right_fitx - left_fitx
width_y_eval_m = width[-1] * self.xm_per_pix
checkpoints = np.linspace(width[0], width[-1], self.nwindows)
update_lane_polygon = True
alpha = 0.6
if self.baseline_landewidth_pixels is None:
self.baseline_landewidth_pixels = (checkpoints[-2] + width[-1])/2.
else:
self.baseline_landewidth_pixels = width[-1] * (1-alpha) + self.baseline_landewidth_pixels * alpha;
lane_tolarence_pixels = self.baseline_landewidth_pixels/8 # @todo: this is a magic number to represent 20% deviation
deviations = np.abs(checkpoints - self.baseline_landewidth_pixels) < lane_tolarence_pixels
'''
because we measure distances starting from the car
'''
deviations_fronm_car = np.flipud(deviations)
clear_distance_slices = 0
for checkpoint in range(self.nwindows):
clear_distance_slices += 1
if deviations_fronm_car[checkpoint] == False:
break
debugmsg = "%sCLEAR SLICES IN NORMAL MODE = %d \n" % (debugmsg, clear_distance_slices)
if(clear_distance_slices < self.nwindows):
clear_pixels = clear_distance_slices * slice_length//self.nwindows
if clear_pixels < self.minimum_lookahead_pixels: # @todo: missed frame count < x
'''
we just repeat the last succesful capture
'''
None
update_lane_polygon = False
break # abort unusable frame
else:
'''
we try another fit with with a cropped slice
'''
slice_start__pixel_row = slice_length - clear_pixels
self.last_good_left_fit = left_fit*alpha + self.last_good_left_fit*(1-alpha)
self.last_good_right_fit = right_fit*alpha + self.last_good_right_fit*(1-alpha)
tries += 1
else: # clear distance is full
self.last_good_left_fit = left_fit
self.last_good_right_fit = right_fit
self.coefficent_buffer_left.append(left_fit)
self.coefficent_buffer_right.append(right_fit)
update_lane_polygon = True
self.entry_run_next = 1
break # good frame - no need to look further
else:
break # bad frame
if self.useDWA == True and self.baseline_landewidth_pixels is not None and right_fitx is not None and left_fitx is not None and (leftx_ok == True or rightx_ok == True):
width = right_fitx - left_fitx # @todo: check for NoneType?
width_y_eval_m = width[-1] * self.xm_per_pix
checkpoints = np.linspace(width[0], width[-1], self.nwindows)
deviations = np.abs(checkpoints - self.baseline_landewidth_pixels) < 100 # @todo: heal magic number
deviations_fronm_car = np.flipud(deviations)
clear_distance_slices = 0
for checkpoint in range(self.nwindows):
clear_distance_slices += 1
if deviations_fronm_car[checkpoint] == False:
break
debugmsg = "%sDWA lane rescue\n" % (debugmsg)
debugmsg = "%sCLEAR SLICES IN RECOVERY MODE = %d\n" % (debugmsg, clear_distance_slices)
if clear_distance_slices > 2: # @todo: heal magic number
leftx_ok = True
rightx_ok = True
update_lane_polygon = True
if leftx_ok == True and rightx_ok == True and update_lane_polygon == True:
ploty_augmented = ploty
rightx_flipped = np.flipud(right_fitx)
xs = np.concatenate((left_fitx, rightx_flipped));
y_flipped = np.flipud(ploty_augmented)
ys = np.concatenate((ploty_augmented , y_flipped));
ys += self.slice_vertical_offset
poly_points = np.concatenate((xs.reshape(xs.shape[0], 1), ys.reshape(ys.shape[0], 1)), axis=1, out=None) # can't set datatype in this version (< 1.20.0)
hom_augment_ones = np.ones((poly_points.shape[0], 1), dtype=float)
hom_poly_points = np.concatenate((poly_points, hom_augment_ones), axis=1).T # we have to transpose because we multilpy with the 3*3 matrix
img_lane_poly = self.m_ppt_inv.dot(hom_poly_points)
img_lane_poly_hom = (img_lane_poly/img_lane_poly[-1]).T
img_lane_poly_xy = img_lane_poly_hom[:,0:2]
return left_fitx, right_fitx, ploty, avg_radius_m, vehicle_offset_m_signed, update_lane_polygon, img_lane_poly_xy, width_y_eval_m, debugmsg
return left_fitx if leftx_ok == True else None, right_fitx if rightx_ok == True else None, ploty, avg_radius_m, None , False , None, None, debugmsg
'''
Dynamic window function, DWA
'''
def dwa(self, slice, hist):
dwadebug = "DWA-DEBUG\n"
'''
Note: Theoratical minimum for slice height is self.nwindows
'''
midpoint = np. midpoint = np.int(hist.shape[0]//2)
out_img = np.dstack((slice, slice, slice))
leftx_base = np.argmax(hist[:midpoint])
rightx_base = np.argmax(hist[midpoint:]) + midpoint
window_height = np.int(slice.shape[0]//self.nwindows)
leftx_current = leftx_base
rightx_current = rightx_base
LHS_lane_x_coords = deque(maxlen=self.max_lane_pixels)
LHS_lane_y_coords = deque(maxlen=self.max_lane_pixels)
RHS_lane_x_coords = deque(maxlen=self.max_lane_pixels)
RHS_lane_y_coords = deque(maxlen=self.max_lane_pixels)
t_margin = self.margin
alfa = 0.7 # influence of new data on the ongoing estimate (totals to 1)
both_lane_fits_count = 0
any_lane_hits_count = 0
is_dwadwa = self.useDWA
# self.last_dwa_hits = np.empty((0,2))
# self.last_window_x = np.empty((self.nwindows, 2), dtype=int) # left window start and right window start
# self.window_mix_ratio = 0.5
if is_dwadwa == False:
self.last_window_x = np.empty((self.nwindows, 2), dtype=int) # leftx_current and rightx_current
self.last_dwa_hits = 0
dwadebug = "%sUSING DWA MEMORY\n" % (dwadebug)
dwadebug = "%sLAST ITERATION DETECTIONS = %d\n" % (dwadebug, self.last_dwa_hits)
keep_looking_ahead = True # clear distance from the front of vehicle
for window in range(self.nwindows):
left_window_minpix_ok = False
right_window_minpix_ok = False
winy_low = slice.shape[0] - (window + 1) * window_height
winy_high = slice.shape[0] - window * window_height
'''
usually at this point we have to do a fresh scan
'''
if is_dwadwa == False or self.last_dwa_hits <= 2:
winx_left_low = leftx_current - t_margin
winx_left_high = leftx_current + t_margin
self.last_window_x[window, 0] = leftx_current
winx_right_low = rightx_current - t_margin
winx_right_high = rightx_current + t_margin
self.last_window_x[window, 1] = rightx_current
if is_dwadwa == True and self.last_dwa_hits > 2:
'''
we take into account the past window locations and constrain the new locations
'''
winx_left_low = np.int(leftx_current * self.window_mix_ratio + self.last_window_x[window, 0] * (1 - self.window_mix_ratio) - t_margin)
winx_left_high = np.int(leftx_current * self.window_mix_ratio + self.last_window_x[window, 0] * (1 - self.window_mix_ratio) + t_margin)
winx_right_low = np.int(rightx_current * self.window_mix_ratio + self.last_window_x[window, 1] * (1 - self.window_mix_ratio) - t_margin)
winx_right_high = np.int(rightx_current * self.window_mix_ratio + self.last_window_x[window, 1] * (1 - self.window_mix_ratio) + t_margin)
'''
y coordinates are determined by the window slice, to find the x-coordinates
we will get the slice and check how much non-zero pixels fall within the rectangle
'''
subset_ = slice[(self.nwindows - window - 1 ) * window_height: (self.nwindows-window ) * window_height, :]
subset_nonzero = subset_.nonzero()
subset_nzx = subset_nonzero[1]
subset_nzy = subset_nonzero[0]
non_zero_rect_intersects_left = ((subset_nzx >= winx_left_low) & (subset_nzx <= winx_left_high)).nonzero()[0]
non_zero_rect_intersects_right = ((subset_nzx >= winx_right_low) & (subset_nzx <= winx_right_high)).nonzero()[0]
'''
now we know the nonzero x coordinates and the index of pixels that are within the box and are not zero
and these indexes are valid for the base image.
'''
left_lane_xs = subset_nzx[non_zero_rect_intersects_left]
left_lane_ys = subset_nzy[non_zero_rect_intersects_left] + (self.nwindows - window - 1 ) * window_height
right_lane_xs = subset_nzx[non_zero_rect_intersects_right]
right_lane_ys = subset_nzy[non_zero_rect_intersects_right] + (self.nwindows - window - 1 ) * window_height
if(len(non_zero_rect_intersects_left)) > self.minpix:
leftx_current = np.int(leftx_current*(1-alfa) + np.mean(subset_nzx[non_zero_rect_intersects_left]) * alfa)
LHS_lane_x_coords.extend(left_lane_xs)
LHS_lane_y_coords.extend(left_lane_ys)
cv2.rectangle(out_img, (winx_left_low, winy_low), (winx_left_high, winy_high), (0, 255/255, 0), 2)
any_lane_hits_count += 1
left_window_minpix_ok = True
'''
try propsing a location for the right lane too
'''
else:
cv2.rectangle(out_img, (winx_left_low, winy_low), (winx_left_high, winy_high), (1., 0., 0), 2)
'''
In the case of an actual application we should track individual windows across images (frame/time wise) not window (space)
wise, tracing across space in the same window only creates stability for one frame, it has a penalty on real world accuracy.
In other words this is not realy great for a real world scenario at all as it is.
'''
if(len(non_zero_rect_intersects_right)) > self.minpix:
rightx_current = np.int(rightx_current*(1-alfa) + np.mean(subset_nzx[non_zero_rect_intersects_right]) * alfa)
RHS_lane_x_coords.extend(right_lane_xs)
RHS_lane_y_coords.extend(right_lane_ys)
cv2.rectangle(out_img, (winx_right_low, winy_low), (winx_right_high, winy_high), (0., 1., 0), 2)
any_lane_hits_count += 1
right_window_minpix_ok = True
else:
cv2.rectangle(out_img, (winx_right_low, winy_low), (winx_right_high, winy_high), (1., 0., 0), 2)
if left_window_minpix_ok == True and right_window_minpix_ok == False and (is_dwadwa == False or self.last_dwa_hits > 2):
if window == 0:
rightx_current = leftx_current + self.lanewidth_estimated_pixels # will be overwritten if right has minpixels
if window > 0 :
rightx_current = np.int((leftx_current + self.lanewidth_estimated_pixels) * alfa + rightx_current * ( 1 - alfa ))
if right_window_minpix_ok == True and left_window_minpix_ok == False and (is_dwadwa == False or self.last_dwa_hits > 2):
if window == 0:
leftx_current = rightx_current - self.lanewidth_estimated_pixels
if window > 0 :
leftx_current = np.int((rightx_current - self.lanewidth_estimated_pixels) * alfa + leftx_current * ( 1 - alfa ))
if left_window_minpix_ok == False or right_window_minpix_ok == False:
keep_looking_ahead = False
if((len(non_zero_rect_intersects_right)) > self.minpix) and keep_looking_ahead == True and ((len(non_zero_rect_intersects_right)) > self.minpix):
both_lane_fits_count += 1
self.last_window_x[window, 0] = leftx_current
self.last_window_x[window, 1] = rightx_current
self.last_dwa_hits = any_lane_hits_count
dwadebug = "%sTHIS ITERATION DETECTIONS = %d\n" % (dwadebug, self.last_dwa_hits)
self.useDWA = True
left_fitx, right_fitx, ploty, avg_radius_m, vehicle_offset_m_signed, update_lane_polygon, lane_polygon, lane_width, debugmsg = self.fit_poly(slice.shape[0], LHS_lane_x_coords, LHS_lane_y_coords, RHS_lane_x_coords, RHS_lane_y_coords)
if both_lane_fits_count > 2 and any_lane_hits_count >= 1 and update_lane_polygon == False:
dwadebug = "%sPOLYFIT FAILED: MAYBE CLEAR AHEAD FOR %d UNITS (%1.1fm) \n" % (dwadebug, both_lane_fits_count, both_lane_fits_count * window_height * self.ym_per_pix)
'''
dwa suggested polygon
'''
debugmsg = "%s%s\n" % (debugmsg, dwadebug)
return out_img, avg_radius_m, vehicle_offset_m_signed, update_lane_polygon, lane_polygon, lane_width, debugmsg
'''
*Polynomal proximity fit function [PROXI-FIT]*
This function needs an existing fit to work with (need dwa to to run scuccesfullly at least once)
@Idea: I guess an ideal Self deiving car would be able to somehow determine this for any givn frame, therefore pocess an contextual
understandnig of it's surroundings
'''
def search_near_poly(self, slice):
self.useDWA = False
# Grab activated pixels
nonzero = slice.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
'''
search for activated x values within the margin constained by the polynomial
function.
'''
left_lane_y_inds = ((nonzerox >= self.left_fit_current[0] * nonzeroy**2 + self.left_fit_current[1] * nonzeroy + self.left_fit_current[2] - self.margin) & (nonzerox <= self.left_fit_current[0] * nonzeroy**2 + self.left_fit_current[1] * nonzeroy + self.left_fit_current[2] + self.margin)).nonzero()[0]
right_lane_y_inds = ((nonzerox >= self.right_fit_current[0] * nonzeroy**2 + self.right_fit_current[1] * nonzeroy + self.right_fit_current[2] - self.margin) & (nonzerox <= self.right_fit_current[0] * nonzeroy**2 + self.right_fit_current[1] * nonzeroy + self.right_fit_current[2] + self.margin)).nonzero()[0]
'''
extract the pixel coordinates
'''
leftx = nonzerox[left_lane_y_inds]
lefty = nonzeroy[left_lane_y_inds]
rightx = nonzerox[right_lane_y_inds]
righty = nonzeroy[right_lane_y_inds]
'''
fit_new_polynomials, get lane curvature radius estimate, get vehicle offset estimate
'''
left_fitx, right_fitx, ploty, avg_radius_m, vehicle_offset_m_signed, update_lane_polygon, lane_polygon, lane_width, debugmsg = self.fit_poly(slice.shape[0], leftx, lefty, rightx, righty)
'''
calculate polygons
1. Lane polygons (boundary of the proximity search) - for the binary image
2. Lane area polygon - to be backprojected into the source image
'''
if left_fitx is not None or right_fitx is not None:
view_img = np.dstack((slice, slice, slice)) # multiply by 255 if thresholded to 1
poly_img = np.zeros_like(view_img)
if left_fitx is not None:
left_lane_window1 = np.array([np.transpose(np.vstack([left_fitx-self.margin, ploty]))])
left_lane_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+self.margin, ploty])))])
left_lane_pts = np.hstack((left_lane_window1, left_lane_window2))
cv2.fillPoly(poly_img, np.int_([left_lane_pts]) , (0, 255, 0))
if right_fitx is not None:
right_lane_window1 = np.array([np.transpose(np.vstack([right_fitx-self.margin, ploty]))])
right_lane_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+self.margin, ploty])))])
right_lane_pts = np.hstack((right_lane_window1, right_lane_window2))
cv2.fillPoly(poly_img, np.int_([right_lane_pts]), (0, 255, 0))
if left_fitx is not None or right_fitx is not None:
warped_result_annotated = (cv2.addWeighted(view_img, 0.7, poly_img, 0.3, 0 ))/255.
return warped_result_annotated, avg_radius_m, vehicle_offset_m_signed, update_lane_polygon, lane_polygon, lane_width, debugmsg
else:
return np.dstack((slice, slice, slice)), avg_radius_m, vehicle_offset_m_signed, update_lane_polygon, lane_polygon, lane_width, debugmsg
'''
state machine image prep function
wraps around Lane finder's image prep function
'''
def prep_image(self,image):
roi_warped = self.prepare_image(image)
return "select_lane_finder", roi_warped;
'''
Choose which lane finder to use:
'''
def select_lane_finder(self, image):
if(self.use_previous_reference == True):
return "find_lanes_from_prev_ref", image;
else:
return "find_lanes_initial", image;
'''
Run this when no previous lane refences are not available.
Because this is not a realtime app, find both (othewise only the lane it can't lock onto)
'''
def find_lanes_initial(self,image):
None
'''
when thigs are going good, use learningsfrom previous frame,
The state evolution of coefficents are assumed to be markovian,
I think this may at least work in most cases but not all!
'''
def find_lanes_from_previous_references(self):
None
# To get the Next image this function has to return an image to be replaced.
def entry(self, image):
# First we get a filtered and warped image.
debugmsg = None
warped, hist, undistorted_image = self.prepare_image(image)
'''
at startup or in a fallback, do dwa for m frames! and if seperation is stable
hand over to proxi-fit
'''
if (self.entry_run_next == 0):
# first iteration or a recovery request
annotated, avg_radius_m, offset_m, update_lane_polygon, lane_polygon, lane_width_m, debugmsg = self.dwa(warped, hist)
debugmsg = "%sMODE: DWA\n" % (debugmsg)
if update_lane_polygon == False :
self.entry_fatal_error_count = self.entry_fatal_error_count + 1 if self.entry_fatal_error_count < self.entry_fatal_error_count_limit else self.entry_fatal_error_count_limit
if self.entry_fatal_error_count > 1 :
self.entry_total_error_count += 1 # just logging
elif update_lane_polygon == True and (self.entry_proxi_fit_misses_count > 0) :
self.entry_fatal_error_count = 0
self.entry_proxi_fit_recovery_by_dwa_count += 1 # just logging
elif update_lane_polygon == True and (self.entry_fatal_error_count > 0) :
self.entry_fatal_error_count = 0
self.entry_dwa_next_frame_recovery += 1
if (self.entry_run_next == 1):
annotated, avg_radius_m, offset_m, update_lane_polygon, lane_polygon, lane_width_m, debugmsg = self.search_near_poly(warped)
debugmsg = "%sMODE: PROXI-FIT\n" % (debugmsg)
if update_lane_polygon == False :
self.entry_proxi_fit_misses_count = self.entry_proxi_fit_misses_count + 1 if self.entry_proxi_fit_misses_count < self.entry_proxi_fit_misses_count_limit else self.entry_proxi_fit_misses_count_limit
elif update_lane_polygon == True :
self.entry_proxi_fit_misses_count = 0
alfa = 0.6
lane_polygon_t = None
if lane_polygon is not None and self.last_succesful_lane_polygon is not None and update_lane_polygon == True:
try:
lane_polygon_t = lane_polygon * alfa + self.last_succesful_lane_polygon * (1-alfa)
except:
None
lane_polygon = lane_polygon_t if lane_polygon_t is not None else lane_polygon
offset_msg = ""
radius_msg = ""
topsLeftCornerText = (10,50)
topsLeftCornerText1 = (10,100)
topsLeftCornerText2 = (10,150)
LaneWidthMText = (10,200)
ProxiFitRecoveryByDWANumText = (10,250)
DWANextFrameRecoveryNumText = (10,300)
self.imsrc.set_data(annotated)
augmented_image = np.zeros_like(undistorted_image)
radius_msg = 'Avg R = %.1f m' % avg_radius_m if avg_radius_m is not None else "Avg R = NOT COMPUTED" ;
lane_msg = "NO LANE MSG"
lane_width_msg = "Lane Width = NA"
interop_tries = 0
if update_lane_polygon == True:
self.entry_run_next = 1
self.lane_area_polygon.set_xy(lane_polygon)
poly_img = np.zeros_like(undistorted_image)
cv2.fillPoly(poly_img, np.int_([lane_polygon]) , (0, 255, 0))
augmented_image = cv2.addWeighted(undistorted_image, 1.0 , poly_img, 0.3, 0 )
self.last_succesful_lane_polygon = np.copy(lane_polygon)
self.failures_since_last_polygon = 0
offset_msg = "Vehicle is " + "%.2f" % np.abs(offset_m ) + "m " + ("left" if (offset_m > 0) else "right") + " of centre";
lane_msg = "LANE SEPERATION: YES"