-
Notifications
You must be signed in to change notification settings - Fork 0
/
poly_lane_finding_smooth.py
307 lines (207 loc) · 11.2 KB
/
poly_lane_finding_smooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button
from collections import deque
from itertools import islice
from matplotlib.lines import Line2D
import pickle
# img = cv2.imread('../examples/warped-example.jpg')
# grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
'''
@precentage : how much of the image from the top is cropeed out
clear
'''
def sliceimg(img, precentage):
image_length = np.shape(img)[0]
x_ = np.int(image_length/100.)*precentage
sliced = img[x_:,:]
ret = np.copy(sliced)
return ret
'''
Function to create a slice and it's histogram
'''
def sliceimg_and_histogram(img, precentage):
image_length = np.shape(img)[0]
slice_start = np.int((image_length/100.)*precentage)
x_ = slice_start if (image_length - slice_start)//nwindows > 0 else image_length - nwindows # to stop crashing poly-fit
# due to insufficient rows w.r.t nwindows
# we alloate the minimum slice hight to be a function of nwindows.
# however it may still throw an error if there are no 'lane-pixels'
# within the slice.
sliced = img[x_:,:]
norm_sliced = sliced/255
thist = np.sum(norm_sliced, axis=0)
retimg = np.copy(sliced)
return retimg, thist
def update_slicedimg(val):
sliced, hist = sliceimg_and_histogram(grayimg, np.int(val))
yy =np.zeros_like(sliced)
out_img = np.dstack((sliced, sliced, sliced))
midpoint = np.int(hist.shape[0]//2)
leftx_base = np.argmax(hist[:midpoint])
rightx_base = np.argmax(hist[midpoint:]) + midpoint
window_height = np.int(sliced.shape[0]//nwindows)
leftx_current = leftx_base
rightx_curernt = rightx_base
max_lane_pixels = 30000
LHS_lane_x_coords = deque(maxlen=max_lane_pixels)
LHS_lane_y_coords = deque(maxlen=max_lane_pixels)
RHS_lane_x_coords = deque(maxlen=max_lane_pixels)
RHS_lane_y_coords = deque(maxlen=max_lane_pixels)
# step through the windows
alfa = 0.6
for window in range(nwindows):
winy_low = sliced.shape[0] - (window + 1) * window_height
winy_high = sliced.shape[0] - window * window_height
winx_left_low = leftx_current - margin
winx_left_high = leftx_current + margin
winx_right_low = rightx_curernt - margin
winx_right_high = rightx_curernt + margin
cv2.rectangle(out_img, (winx_left_low, winy_low), (winx_left_high, winy_high), (0, 255, 0), 2)
cv2.rectangle(out_img, (winx_right_low, winy_low), (winx_right_high, winy_high), (0, 255, 0), 2)
'''
y coordinates are determined by the window slice, to find the x-coordinates
we wil get the slice and check how much non-zero pixels fall within the rectangle
'''
subset_ = sliced[(nwindows - window - 1 ) * window_height: (nwindows-window ) * window_height, :]
subset_nonzero = subset_.nonzero()
subset_nzx = subset_nonzero[1]
subset_nzy = subset_nonzero[0]
non_zero_rect_intersects_left = ((subset_nzx >= winx_left_low) & (subset_nzx <= winx_left_high)).nonzero()[0]
non_zero_rect_intersects_right = ((subset_nzx >= winx_right_low) & (subset_nzx <= winx_right_high)).nonzero()[0]
'''
now we know the nonzero x coordinates and the index of pixels that are within the box and are not zero
and these indexes are valid for the base image.
'''
left_lane_xs = subset_nzx[non_zero_rect_intersects_left]
left_lane_ys = subset_nzy[non_zero_rect_intersects_left] + (nwindows - window - 1 ) * window_height
right_lane_xs = subset_nzx[non_zero_rect_intersects_right]
right_lane_ys = subset_nzy[non_zero_rect_intersects_right] + (nwindows - window - 1 ) * window_height
LHS_lane_x_coords.extend(left_lane_xs)
LHS_lane_y_coords.extend(left_lane_ys)
RHS_lane_x_coords.extend(right_lane_xs)
RHS_lane_y_coords.extend(right_lane_ys)
if(len(non_zero_rect_intersects_left)) > minpix:
leftx_current = np.int(leftx_current*(1-alfa) + np.mean(subset_nzx[non_zero_rect_intersects_left]) * alfa)
if(len(non_zero_rect_intersects_right)) > minpix:
rightx_curernt = np.int(rightx_curernt*(1-alfa) + np.mean(subset_nzx[non_zero_rect_intersects_right]) * alfa)
out_img[LHS_lane_y_coords, LHS_lane_x_coords] = (255,0,200)
out_img[RHS_lane_y_coords, RHS_lane_x_coords] = (255,0,100)
'''
here we assume there are enough points, implement checks in a more serious implementation.
'''
left_fit = np.polyfit(LHS_lane_y_coords, LHS_lane_x_coords, 2)
right_fit = np.polyfit(RHS_lane_y_coords, RHS_lane_x_coords, 2)
ploty = np.linspace(0, sliced.shape[0] - 1, sliced.shape[0])
try:
left_fitx = left_fit[0]*ploty**2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1] * ploty + right_fit[2]
except TypeError:
print("polyfit_failed")
# LHS_lane_y_coords_m = [i * ym_per_pix for i in LHS_lane_y_coords]
# LHS_lane_x_coords_m = [i * xm_per_pix for i in LHS_lane_x_coords]
# RHS_lane_y_coords_m = [i * ym_per_pix for i in RHS_lane_y_coords]
# RHS_lane_x_coords_m = [i * xm_per_pix for i in RHS_lane_x_coords]
# left_fit_cr = np.polyfit(LHS_lane_y_coords_m , LHS_lane_x_coords_m , 2)
# right_fit_cr = np.polyfit(RHS_lane_y_coords_m , RHS_lane_x_coords_m , 2)
y_eval = np.max(ploty)
'''
Testing an alternative way to scale pixels:
polyfit function finds coefficients to fit a polynomial that looks like
x = p[0] * y^2 + p[1] * y + p[2]
this polynomial can be plotted in a pixel map with x and (horizontal) y(vertical) axes.
if we want to convert that to meters we will need to parametric relations
x' = x * m_per_px_in_x_dir
y' = y * m_per_px_in_y_dir
to convert the modified pixmap to a cartesian map of meters we can use the equations above to look like below.
x' = m_per_px_in_x_dir ( p[0] * (y'/m_per_px_in_y_dir)^2 + p[1] * (y'/m_per_px_in_y_dir) + p[2])
x' = p[0] * m_per_px_in_x_dir * (1/m_per_px_in_y_dir)^2 * y'^2 + p[1] * m_per_px_in_x_dir * (1/m_per_px_in_y_dir) * y' + p[2] * m_per_px_in_x_dir
now we can modify the coefficients
p'[0] = p[0] * m_per_px_in_x_dir * (1/m_per_px_in_y_dir)^2
p'[1] = p[1] * m_per_px_in_x_dir * (1/m_per_px_in_y_dir
p'[2] = p[2] * m_per_px_in_x_dir
The new polynomial becomes
x' = p'[0] * y'^2 + p'[1] * y' + p'[2]
'''
left_fit_m = np.copy(left_fit)
right_fit_m = np.copy(right_fit)
left_fit_m[0] = left_fit_m[0] * xm_per_pix * (1/ym_per_pix)**2
left_fit_m[1] = left_fit_m[1] * xm_per_pix/ym_per_pix
left_fit_m[2] = left_fit_m[2] * xm_per_pix
right_fit_m[0] = right_fit_m[0] * xm_per_pix * (1/ym_per_pix)**2
right_fit_m[1] = right_fit_m[1] * xm_per_pix/ym_per_pix
right_fit_m[2] = right_fit_m[2] * xm_per_pix
y_eval_m = y_eval * ym_per_pix;
left_curverad_m = np.sqrt((1 + (2*left_fit_m[0]*y_eval_m + left_fit_m[1])**2)**3)/np.fabs(2*left_fit_m[0])
right_curverad_m = np.sqrt((1 + (2*right_fit_m[0]*y_eval_m + right_fit_m[1])**2)**3)/np.fabs(2*right_fit_m[0])
# left_curverad = np.sqrt((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**3)/np.fabs(2*left_fit_cr[0])
# right_curverad = np.sqrt((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**3)/np.fabs(2*right_fit_cr[0])
# avg_radius = (left_curverad + right_curverad) / 2.
avg_radius_m = (left_curverad_m + right_curverad_m) / 2.
fontsize = 1.1
# cv2.putText(out_img, 'Left R = %.2f m' % left_curverad , (midpoint- 100,200) , cv2.FONT_HERSHEY_SIMPLEX, fontsize, (252, 186, 3), 2 , cv2.LINE_AA)
# cv2.putText(out_img, 'Right R = %.2f m' % right_curverad, (midpoint -100, 150) , cv2.FONT_HERSHEY_SIMPLEX, fontsize, (252, 186, 3), 2 , cv2.LINE_AA)
cv2.putText(out_img, 'Avg R = %.1f m' % (avg_radius_m) , (midpoint -100, 50) , cv2.FONT_HERSHEY_SIMPLEX, fontsize, (252, 186, 3), 2 , cv2.LINE_AA)
'''
Vehicle position detection:
Here we assume the Image centre is aligned with the vehicle centre.
Our goal is to find the pixel offset between the midpoint of lanes and the midpoint of the vehicle.
Note: The actual useful centre point is a function of speed and the delay compensation, however we use y_eval for this project
'''
left_x = left_fit[0]*y_eval**2 + left_fit[1] * y_eval + left_fit[2]
right_x = right_fit[0]*y_eval**2 + right_fit[1] * y_eval + right_fit[2]
# print("left_x = " + np.str(left_x) + " right_x = " + np.str(right_x));
lane_centre = (left_x + right_x) // 2;
vehicle_offset = (midpoint - lane_centre) *1. # This is in pixels
# print("VC = " + np.str(midpoint) + " LC = " + np.str(lane_centre));
msg = "Vehicle is " + "%.2f" % np.abs(vehicle_offset * xm_per_pix * 1.) + "m " + ("left" if (vehicle_offset > 0) else "right") + "of centre";
cv2.putText(out_img, msg , (midpoint -100, 100) , cv2.FONT_HERSHEY_SIMPLEX, fontsize, (252, 186, 3), 2 , cv2.LINE_AA)
left_lane.set_data(left_fitx, ploty)
right_lane.set_data(right_fitx, ploty)
im.set_data(out_img)
ex =(-0.5, 1279.5, np.shape(out_img)[0], -0.5)
im.set_extent(ex) # first get extent to get the values
l_.set_ydata(hist)
ax.set_ylim(0, np.max(hist) * 1.2)
fig.canvas.draw_idle()
if __name__ == "__main__":
img = cv2.imread('../examples/warped-example.jpg')
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
fig, (ax, ax2) = plt.subplots(1, 2, figsize=(15, 6))
plt.subplots_adjust(left=0.1, bottom=0.30)
ax.margins(x=0)
# set x axis with the image cols
x_ = np.arange(0, len(grayimg[-1]), 1)
y_ = np.sum(grayimg, axis=0) # axis 0 is the rows axis, will sum each row along each column
l_, = ax.plot(x_, y_)
llx = []
lly = []
linewidth = 3
linecolor = 'yellow'
left_lane = Line2D(llx, lly, lw=linewidth, color=linecolor)
right_lane = Line2D(llx, lly, lw=linewidth, color=linecolor)
ax2.add_line(left_lane)
ax2.add_line(right_lane)
# plt.plot(left_fitx, ploty, color='yellow')
# print(ax.get_extent())
axcolor = 'lightgoldenrodyellow'
vcrop_from_bottom = plt.axes([0.1, 0.20, 0.8, 0.03], facecolor=axcolor)
# vinit = 50.0
vh_adjust = Slider(vcrop_from_bottom, 'V-height', 0, 100.0, valinit=0, valstep=1)
sliced = sliceimg(img, 0)
im = ax2.imshow(sliced, cmap='gray')
ax2.set_anchor('SW')
nwindows = 9
margin = 50
minpix = 50
ym_per_pix = 30/720 # meters per pixel in y dimension
xm_per_pix = 3.7/700 # meters per pixel in x dimension
vh_adjust.on_changed(update_slicedimg)
resetax = plt.axes([0.8, 0.10, 0.1, 0.04])
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
def reset(event):
vh_adjust.reset()
button.on_clicked(reset)
plt.show()