-
Notifications
You must be signed in to change notification settings - Fork 63
/
cipher_suite.go
224 lines (185 loc) · 5.29 KB
/
cipher_suite.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
package noise
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"hash"
"io"
"golang.org/x/crypto/blake2b"
"golang.org/x/crypto/blake2s"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/crypto/curve25519"
)
// A DHKey is a keypair used for Diffie-Hellman key agreement.
type DHKey struct {
Private []byte
Public []byte
}
// A DHFunc implements Diffie-Hellman key agreement.
type DHFunc interface {
// GenerateKeypair generates a new keypair using random as a source of
// entropy.
GenerateKeypair(random io.Reader) (DHKey, error)
// DH performs a Diffie-Hellman calculation between the provided private and
// public keys and returns the result.
DH(privkey, pubkey []byte) ([]byte, error)
// DHLen is the number of bytes returned by DH.
DHLen() int
// DHName is the name of the DH function.
DHName() string
}
// A HashFunc implements a cryptographic hash function.
type HashFunc interface {
// Hash returns a hash state.
Hash() hash.Hash
// HashName is the name of the hash function.
HashName() string
}
// A CipherFunc implements an AEAD symmetric cipher.
type CipherFunc interface {
// Cipher initializes the algorithm with the provided key and returns a Cipher.
Cipher(k [32]byte) Cipher
// CipherName is the name of the cipher.
CipherName() string
}
// A Cipher is a AEAD cipher that has been initialized with a key.
type Cipher interface {
// Encrypt encrypts the provided plaintext with a nonce and then appends the
// ciphertext to out along with an authentication tag over the ciphertext
// and optional authenticated data.
Encrypt(out []byte, n uint64, ad, plaintext []byte) []byte
// Decrypt authenticates the ciphertext and optional authenticated data and
// then decrypts the provided ciphertext using the provided nonce and
// appends it to out.
Decrypt(out []byte, n uint64, ad, ciphertext []byte) ([]byte, error)
}
// A CipherSuite is a set of cryptographic primitives used in a Noise protocol.
// It should be constructed with NewCipherSuite.
type CipherSuite interface {
DHFunc
CipherFunc
HashFunc
Name() []byte
}
// NewCipherSuite returns a CipherSuite constructed from the specified
// primitives.
func NewCipherSuite(dh DHFunc, c CipherFunc, h HashFunc) CipherSuite {
return ciphersuite{
DHFunc: dh,
CipherFunc: c,
HashFunc: h,
name: []byte(dh.DHName() + "_" + c.CipherName() + "_" + h.HashName()),
}
}
type ciphersuite struct {
DHFunc
CipherFunc
HashFunc
name []byte
}
func (s ciphersuite) Name() []byte { return s.name }
// DH25519 is the Curve25519 ECDH function.
var DH25519 DHFunc = dh25519{}
type dh25519 struct{}
func (dh25519) GenerateKeypair(rng io.Reader) (DHKey, error) {
privkey := make([]byte, 32)
if rng == nil {
rng = rand.Reader
}
if _, err := io.ReadFull(rng, privkey); err != nil {
return DHKey{}, err
}
pubkey, err := curve25519.X25519(privkey, curve25519.Basepoint)
if err != nil {
return DHKey{}, err
}
return DHKey{Private: privkey, Public: pubkey}, nil
}
func (dh25519) DH(privkey, pubkey []byte) ([]byte, error) {
return curve25519.X25519(privkey, pubkey)
}
func (dh25519) DHLen() int { return 32 }
func (dh25519) DHName() string { return "25519" }
type cipherFn struct {
fn func([32]byte) Cipher
name string
}
func (c cipherFn) Cipher(k [32]byte) Cipher { return c.fn(k) }
func (c cipherFn) CipherName() string { return c.name }
// CipherAESGCM is the AES256-GCM AEAD cipher.
var CipherAESGCM CipherFunc = cipherFn{cipherAESGCM, "AESGCM"}
func cipherAESGCM(k [32]byte) Cipher {
c, err := aes.NewCipher(k[:])
if err != nil {
panic(err)
}
gcm, err := cipher.NewGCM(c)
if err != nil {
panic(err)
}
return aeadCipher{
gcm,
func(n uint64) []byte {
var nonce [12]byte
binary.BigEndian.PutUint64(nonce[4:], n)
return nonce[:]
},
}
}
// CipherChaChaPoly is the ChaCha20-Poly1305 AEAD cipher construction.
var CipherChaChaPoly CipherFunc = cipherFn{cipherChaChaPoly, "ChaChaPoly"}
func cipherChaChaPoly(k [32]byte) Cipher {
c, err := chacha20poly1305.New(k[:])
if err != nil {
panic(err)
}
return aeadCipher{
c,
func(n uint64) []byte {
var nonce [12]byte
binary.LittleEndian.PutUint64(nonce[4:], n)
return nonce[:]
},
}
}
type aeadCipher struct {
cipher.AEAD
nonce func(uint64) []byte
}
func (c aeadCipher) Encrypt(out []byte, n uint64, ad, plaintext []byte) []byte {
return c.Seal(out, c.nonce(n), plaintext, ad)
}
func (c aeadCipher) Decrypt(out []byte, n uint64, ad, ciphertext []byte) ([]byte, error) {
return c.Open(out, c.nonce(n), ciphertext, ad)
}
type hashFn struct {
fn func() hash.Hash
name string
}
func (h hashFn) Hash() hash.Hash { return h.fn() }
func (h hashFn) HashName() string { return h.name }
// HashSHA256 is the SHA-256 hash function.
var HashSHA256 HashFunc = hashFn{sha256.New, "SHA256"}
// HashSHA512 is the SHA-512 hash function.
var HashSHA512 HashFunc = hashFn{sha512.New, "SHA512"}
func blake2bNew() hash.Hash {
h, err := blake2b.New512(nil)
if err != nil {
panic(err)
}
return h
}
// HashBLAKE2b is the BLAKE2b hash function.
var HashBLAKE2b HashFunc = hashFn{blake2bNew, "BLAKE2b"}
func blake2sNew() hash.Hash {
h, err := blake2s.New256(nil)
if err != nil {
panic(err)
}
return h
}
// HashBLAKE2s is the BLAKE2s hash function.
var HashBLAKE2s HashFunc = hashFn{blake2sNew, "BLAKE2s"}