-
Notifications
You must be signed in to change notification settings - Fork 281
/
test_fsdp.py
913 lines (768 loc) · 36.9 KB
/
test_fsdp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import functools
import itertools
from math import inf
import pickle
import sys
from typing import Dict
import unittest
from unittest import mock
from parameterized import parameterized
import pytest
import torch
from torch import nn
import torch.distributed
from fairscale.fair_dev.testing.testing import (
DeviceAndTypeCheckModule,
DummyProcessGroup,
dist_init,
get_cycles_per_ms,
objects_are_equal,
skip_a_test_if_in_CI,
spawn_for_all_world_sizes,
)
from fairscale.internal import torch_version
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from fairscale.nn.data_parallel import FullyShardedDataParallel, TrainingState
if torch_version() >= (1, 8, 0):
from fairscale.optim.grad_scaler import ShardedGradScaler
# How to use remote-pdb: https://gist.github.com/sshleifer/9d43351957179c13606e015b072927d4
# All helper functions called by spawn must be either @classmethod, @staticmethod
class DistributedTest(unittest.TestCase):
def setUp(self):
if torch_version() < (1, 6, 0):
raise unittest.SkipTest("Need pytorch version >= 1.6 due to lack of reduce_scatter")
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA not available, skipping test")
if sys.platform == "win32":
raise unittest.SkipTest("NCCL doesn't support Windows, skipping test")
if torch.cuda.device_count() < 2:
raise unittest.SkipTest("distributed tests require 2+ GPUs, skipping")
@staticmethod
def _train_for_several_steps(model, num_steps, autocast, lr=0.01, norm_type=None):
model_device = next(model.parameters()).device
# use SGD with momentum instead of Adam, since Adam is scale invariant
# and this makes it bad for tests
optim = torch.optim.SGD(params=model.parameters(), lr=lr, momentum=0.9)
scaler = ShardedGradScaler()
for _ in range(num_steps):
optim.zero_grad()
with torch.cuda.amp.autocast(enabled=autocast):
# Inputs always cuda regardless of move_grads_cpu, or model.device
input = model.module.get_input(torch.device("cuda"))
output = model(*input)
loss = model.module.get_loss(input, output).to(model_device)
loss = scaler.scale(loss)
assert loss.dtype == torch.float32
model.module.run_backward(loss)
if norm_type is not None:
clip_norm = 0.3
if isinstance(model, FullyShardedDataParallel):
model.clip_grad_norm_(clip_norm, norm_type)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_norm, norm_type)
scaler.step(optim)
scaler.update()
if hasattr(model, "assert_idle"):
model.assert_idle()
if isinstance(model, FullyShardedDataParallel):
model.assert_state(TrainingState.IDLE)
return loss.detach()
@staticmethod
def get_wrapped_model(group, cuda_first=False, config={}, **model_kwargs) -> FullyShardedDataParallel:
if cuda_first:
model = FullyShardedDataParallel(TransformerWithSharedParams(group, **model_kwargs).cuda(), group, **config)
else:
model = FullyShardedDataParallel(TransformerWithSharedParams(group, **model_kwargs), group, **config).cuda()
return model
@classmethod
def _test_identical_outputs(
cls,
model_init_fn,
config,
rank,
group,
num_steps=2,
use_cuda=True,
lr=0.01,
ref_ddp_fn=None,
norm_type=2,
):
if config.get("mixed_precision", False):
autocast = True
# Force the compute dtype to be torch.float32 so that we get
# identical results as PyTorch DDP when using autocast. Note that
# this will cause the all-gather to happen in FP32, which is slower
# than necessary in most cases.
config["compute_dtype"] = torch.float32
else:
autocast = False
# Establish reference behavior with PyTorch DDP (+ optionally autocast).
model = model_init_fn(group=group, wrapper_config=None).cuda()
if ref_ddp_fn is None:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[rank], output_device=rank, process_group=group
)
else:
model = ref_ddp_fn(model, group)
ref_loss = cls._train_for_several_steps(model, num_steps, autocast, lr=lr, norm_type=norm_type)
ref_state_dict = model.module.state_dict()
if config.get("cpu_offload", False):
for k in ref_state_dict.keys():
ref_state_dict[k] = ref_state_dict[k].cpu()
# Confirm we get the same behavior using FullyShardedDataParallel.
model = FullyShardedDataParallel(model_init_fn(group=group, wrapper_config=config), group, **config)
if use_cuda:
model = model.cuda()
else:
assert next(model.parameters()).device == torch.device("cpu")
shard_loss = cls._train_for_several_steps(model, num_steps, autocast, lr=lr, norm_type=norm_type)
if config.get("cpu_offload", False):
# In pytorch 1.10, assert_allclose below checks for tensor device match. Therefore,
# we need to move the CPU tensor to CUDA in case we are doing cpu_offload.
shard_loss = shard_loss.cuda()
shard_state_dict = model.state_dict()
if config.get("state_dict_on_rank_0_only", False):
if torch.distributed.get_rank() != 0:
assert shard_state_dict == {}
# rank 0 shard_state_dict test covered in the following test.
# return is needed here, because with state_dict_on_rank_0_only=True, the following assert will fail on rank!=0
return
try:
torch.testing.assert_allclose(ref_loss, shard_loss)
assert objects_are_equal(ref_state_dict, shard_state_dict, raise_exception=True)
except (AssertionError, RuntimeError) as e:
raise Exception(f"FullyShardedDataParallel didn't match PyTorch DDP using config: {config}\n\n {e}")
if config.get("flatten_parameters", True):
metadata = model.local_metadata_dict()
assert isinstance(metadata, dict)
class TestMixedPrecision(DistributedTest):
def test_all_fp32(self):
self._spawn_test_case(
{"mixed_precision": False},
False, # autocast enabled
torch.float32, # expected_input_dtype
torch.float32, # expected_param_dtype
torch.float32, # expected_loss_dtype
torch.float32, # expected_reduce_dtype
)
def test_mixed_precision(self):
self._spawn_test_case(
{"mixed_precision": True},
False, # autocast enabled
torch.float16, # expected_input_dtype
torch.float16, # expected_param_dtype
torch.float16, # expected_loss_dtype
torch.float16, # expected_reduce_dtype
)
def test_mixed_precision_autocast(self):
"""If autocast enabled, loss should be fp32."""
self._spawn_test_case(
{"mixed_precision": True},
True, # autocast enabled
torch.float16, # expected_input_dtype
torch.float16, # expected_param_dtype
torch.float32, # expected_loss_dtype
torch.float16, # expected_reduce_dtype
)
def test_mixed_precision_autocast_buffer_type_fp32(self):
"""If autocast enabled, loss should be fp32."""
self._spawn_test_case(
{"mixed_precision": True, "buffer_dtype": torch.float32},
True, # autocast enabled
torch.float16, # expected_input_dtype
torch.float16, # expected_param_dtype
torch.float32, # expected_loss_dtype
torch.float16, # expected_reduce_dtype
expected_buffer_type=torch.float32,
)
def test_mixed_precision_autocast_fp32_compute(self):
self._spawn_test_case(
{"mixed_precision": True, "compute_dtype": torch.float32},
True, # autocast enabled
torch.float16, # expected_input_dtype
torch.float32, # expected_param_dtype
torch.float32, # expected_loss_dtype
torch.float32, # expected_reduce_dtype
expected_buffer_type=torch.float32,
)
def test_fp32_reduce_scatter(self):
self._spawn_test_case(
{"mixed_precision": True, "fp32_reduce_scatter": True},
False, # autocast enabled
torch.float16, # expected_input_dtype
torch.float16, # expected_param_dtype
torch.float16, # expected_loss_dtype
torch.float32, # expected_reduce_dtype
expected_buffer_type=torch.float16,
)
def test_fp32_reduce_scatter_autocast(self):
self._spawn_test_case(
{"mixed_precision": True, "fp32_reduce_scatter": True},
True, # autocast enabled
torch.float16, # expected_input_dtype
torch.float16, # expected_param_dtype
torch.float32, # expected_loss_dtype
torch.float32, # expected_reduce_dtype
)
def _spawn_test_case(
self,
cfg,
autocast_enabled,
in_dtype,
p_dtype,
loss_dtype,
reduce_dtype,
expected_buffer_type=None,
world_size=2,
):
"""Call test_dtypes inside of torch.multiprocessing.spawn"""
fn = functools.partial(
self._test_dtypes,
cfg,
autocast_enabled,
in_dtype,
p_dtype,
loss_dtype,
reduce_dtype,
expected_buffer_type=expected_buffer_type,
)
spawn_and_init(fn, world_sizes=[world_size])
@staticmethod
def _test_dtypes(
cfg: Dict,
autocast,
in_dtype,
p_dtype,
loss_dtype,
reduce_dtype,
rank,
group,
expected_buffer_type=None,
):
# Patch torch.distributed.reduce_scatter to check the dtype of the reduction
orig_reduce_scatter = torch.distributed.reduce_scatter
model: nn.Module = DeviceAndTypeCheckModule(
expected_input_dtype=in_dtype,
expected_param_dtype=p_dtype,
expected_loss_dtype=loss_dtype,
expected_buffer_dtype=expected_buffer_type,
)
def _reduce_scatter(output, input_list, **kwargs):
for tensor in input_list:
model._check("reduce_scatter.dtype", tensor.dtype, expected=reduce_dtype)
return orig_reduce_scatter(output, input_list, **kwargs)
with mock.patch("torch.distributed.reduce_scatter", new=_reduce_scatter):
model = FullyShardedDataParallel(model, group, **cfg).cuda()
device = next(model.parameters()).device
x = torch.rand(2, 5).to(device)
with torch.cuda.amp.autocast(enabled=autocast):
loss = model(x)
loss.backward()
keys = ["reshard_after_forward", "mixed_precision", "flatten_parameters"]
CONFIG_OPTIONS = [[dict(zip(keys, config))] for config in itertools.product([True, False], repeat=len(keys))]
def rename_test(testcase_func, param_num, param):
return "%s_%s" % (
testcase_func.__name__,
parameterized.to_safe_name(str(param.args)),
)
class TestComparisonToPyTorchDDP(DistributedTest):
"""
Compare losses and parameter values after several updates when using
PyTorch DDP vs. FullyShardedDataParallel.
"""
@parameterized.expand(CONFIG_OPTIONS, name_func=rename_test)
def test_nested_wrapped_model(self, config):
test_fn = functools.partial(self._test_identical_outputs, NestedWrappedModule, config)
spawn_and_init(test_fn)
@parameterized.expand(CONFIG_OPTIONS, name_func=rename_test)
def test_nested_all_wrapped_model(self, config):
model_fn = functools.partial(NestedWrappedModule, wrap_everything=True)
test_fn = functools.partial(self._test_identical_outputs, model_fn, config)
spawn_and_init(test_fn)
@parameterized.expand(CONFIG_OPTIONS, name_func=rename_test)
def test_nested_all_wrapped_model_checkpoint(self, config):
model_fn = functools.partial(NestedWrappedModule, wrap_everything=True, checkpoint=True)
test_fn = functools.partial(self._test_identical_outputs, model_fn, config)
spawn_and_init(test_fn)
@parameterized.expand(CONFIG_OPTIONS, name_func=rename_test)
def test_transformer_parameterized(self, config):
# Test every combination of these options:
spawn_and_init(functools.partial(self._test_identical_outputs, TransformerWithSharedParams, config))
# testing moving params to cpu while using full and mixed precision
@parameterized.expand([(True,), (False,)], name_func=rename_test)
def test_cpu_offload_and_cpu_grads(self, mixed_precision):
config = {"mixed_precision": mixed_precision, "cpu_offload": True}
test_fn = functools.partial(
self._test_identical_outputs, TransformerWithSharedParams, config, use_cuda=False, lr=0.01
)
spawn_and_init(test_fn)
# testing full and mixed precision on the gpu
@parameterized.expand([(True,), (False,)], name_func=rename_test)
def test_no_cpu_offload_with_sharded_grad_scaler(self, mixed_precision):
config = {"mixed_precision": mixed_precision, "move_params_to_cpu": False}
test_fn = functools.partial(
self._test_identical_outputs, TransformerWithSharedParams, config, use_cuda=True, lr=0.01
)
spawn_and_init(test_fn)
def test_cpu_offload_and_cuda_grads_breaks(self):
# If grads are on gpu, but model and optimizer are on cpu, backward breaks.
config = {"mixed_precision": True, "cpu_offload": True, "move_grads_to_cpu": False}
with self.assertRaises(Exception): # RuntimeError inside spawn
test_fn = functools.partial(
self._test_identical_outputs, TransformerWithSharedParams, config, use_cuda=False
)
spawn_and_init(test_fn)
def test_delayed_optim_step(self):
# We use a model with a long CUDA delay right before the optimizer step.
# This tests our streams logic, and that we don't start the FP32 -> FP16
# transfer until after the optimization step completes.
config = {"mixed_precision": True}
model_fn = functools.partial(NestedWrappedModuleWithDelay, delay_after_loss_ms=250)
test_fn = functools.partial(self._test_identical_outputs, model_fn, config)
spawn_and_init(test_fn)
def test_delayed_reduce_scatter(self):
# We insert a delay in the torch.distributed.reduce_scatter op, so that
# the post_backward_stream takes much longer than the backward pass.
# This tests that we properly block at the end of the backward pass for
# the reductions to finish.
config = {"mixed_precision": True}
model_fn = functools.partial(NestedWrappedModuleWithDelay, delay_before_reduction_ms=250)
test_fn = functools.partial(self._test_identical_outputs, model_fn, config)
spawn_and_init(test_fn)
@parameterized.expand([[True], [False]], name_func=rename_test)
def test_state_dict_on_rank_0_only(self, state_dict_on_rank_0_only):
config = {"state_dict_on_rank_0_only": state_dict_on_rank_0_only}
model_fn = functools.partial(TransformerWithSharedParams)
test_fn = functools.partial(self._test_identical_outputs, model_fn, config)
spawn_and_init(test_fn)
@parameterized.expand([[{"checkpoint_act": False}], [{"checkpoint_act": True}]], name_func=rename_test)
def test_mixture_of_experts(self, moe_config):
fsdp_config = {"mixed_precision": True}
test_fn = functools.partial(
self._test_identical_outputs,
functools.partial(MixtureOfExperts, **moe_config),
fsdp_config,
# MixtureOfExperts implements custom reduce logic, so the reference
# behavior should use that logic instead of PyTorch DDP.
ref_ddp_fn=self._dummy_ddp_fn,
norm_type=None,
)
spawn_and_init(test_fn)
@parameterized.expand([[{"checkpoint_act": False}], [{"checkpoint_act": True}]], name_func=rename_test)
def test_mixture_of_experts_with_delay_before_free(self, moe_config):
fsdp_config = {"mixed_precision": True}
test_fn = functools.partial(
self._test_identical_outputs,
functools.partial(MixtureOfExperts, delay_before_free_ms=250, **moe_config),
fsdp_config,
# MixtureOfExperts implements custom reduce logic, so the reference
# behavior should use that logic instead of PyTorch DDP.
ref_ddp_fn=self._dummy_ddp_fn,
norm_type=None,
)
spawn_and_init(test_fn)
def test_mixture_of_experts_grad_clip_breaks(self):
config = {"mixed_precision": True}
test_fn = functools.partial(
self._test_identical_outputs,
MixtureOfExperts,
config,
ref_ddp_fn=self._dummy_ddp_fn,
norm_type=2,
)
with self.assertRaises(Exception):
spawn_and_init(test_fn)
@classmethod
def _dummy_ddp_fn(self, model, group):
return DummyDDP(model)
@parameterized.expand([[1], [inf]], name_func=rename_test)
def test_clip_norm_transformer(self, norm_type):
config = {"mixed_precision": True}
test_fn = functools.partial(
self._test_identical_outputs,
TransformerWithSharedParams,
config,
norm_type=norm_type,
)
spawn_and_init(test_fn)
class TestParamInit(DistributedTest):
def test_param_change_after_init(self):
test_fn = functools.partial(self._test_param_change_after_init, config={"mixed_precision": True})
spawn_and_init(test_fn)
@classmethod
def _test_param_change_after_init(self, rank, group, config):
# Establish reference behavior.
model = self.get_wrapped_model(group, cuda_first=False, config=config)
model.eval() # no dropout for this test
input = model.module.get_input(torch.device("cuda"))
ref_output = model(*input)
# Change the weights in place.
model = self.get_wrapped_model(group, cuda_first=False, config=config)
model.eval() # no dropout for this test
first_param = next(model.parameters())
nn.init.normal_(first_param.data)
new_output = model(*input)
assert not objects_are_equal(ref_output, new_output), "new_output did not reflect change to param after init"
class TestReduceScatterProcessGroup(DistributedTest):
def test_reduce_scatter_process_group_size(self):
"""Ensure that reduce_scatter_process_group same size with the world size."""
test_fn = functools.partial(self._test_reduce_scatter_process_group_size, config={})
spawn_and_init(test_fn, world_sizes=[2])
@classmethod
def _test_reduce_scatter_process_group_size(self, rank, group, config):
model = self._get_model(group, config)
assert model.process_group_reduce_scatter.size() == model.world_size
@classmethod
def _get_model(self, group, config):
with torch.no_grad(): # required for multiprocessing
model = NestedWrappedModule(group, wrapper_config=config)
return FullyShardedDataParallel(model, group, **config)
class TestSerialization(DistributedTest):
@parameterized.expand([[False, False], [True, False], [True, True], [False, True]], name_func=rename_test)
def test_pickle(self, mixed_precision, cpu_offload):
"""Ensure that wrapped modules can be pickled/unpickled."""
skip_a_test_if_in_CI()
config = {"mixed_precision": mixed_precision, "cpu_offload": cpu_offload}
test_fn = functools.partial(self._test_pickle, config=config)
spawn_and_init(test_fn, world_sizes=[2])
@parameterized.expand([[False, False], [True, False], [True, True], [False, True]], name_func=rename_test)
def test_multiprocessing(self, mixed_precision, cpu_offload):
"""Ensure that wrapped modules can be sent via multiprocessing."""
skip_a_test_if_in_CI()
config = {"mixed_precision": mixed_precision, "cpu_offload": cpu_offload}
test_fn = functools.partial(self._test_multiprocessing, config=config)
spawn_and_init(test_fn, world_sizes=[2])
@classmethod
def _test_pickle(self, rank, group, config):
model = self._get_model(group, config)
model = pickle.loads(pickle.dumps(model))
if not config["cpu_offload"]:
model = model.cuda()
self._one_step(model, group)
@classmethod
def _test_multiprocessing(self, rank, group, config):
mp = torch.multiprocessing.Pool(1)
dummy_group = DummyProcessGroup(rank=group.rank(), size=group.size())
config["process_group_reduce_scatter"] = DummyProcessGroup(rank=group.rank(), size=group.size())
model = mp.apply(self._get_model, (dummy_group, config))
if not config["cpu_offload"]:
model = model.cuda()
self._one_step(model, group)
@classmethod
def _get_model(self, group, config):
with torch.no_grad(): # required for multiprocessing
model = NestedWrappedModule(group, wrapper_config=config)
return FullyShardedDataParallel(model, group, **config)
@classmethod
def _one_step(self, model, group):
# reset the process group (required after unpickling)
for m in model.modules():
if isinstance(m, FullyShardedDataParallel):
m.process_group = group
m.process_group_reduce_scatter = torch.distributed.new_group()
optim = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
input = model.module.get_input(torch.device("cuda"))
output = model(*input)
loss = model.module.get_loss(input, output)
model.module.run_backward(loss)
optim.step()
@pytest.mark.skipif(torch_version() < (1, 8, 0), reason="pytorch version >= 1.8.0 required")
class TestHooks(DistributedTest):
# Feel free to modify these tests as the implementation changes.
# They aspire to make sure that backward hooks are registered and used
@parameterized.expand([[True], [False]])
def test_output_backward_hooks(self, cuda_first):
fn = functools.partial(self._test_output_backward_hooks, cuda_first=cuda_first)
spawn_and_init(fn)
def test_backward_hooks_after_save(self):
fn = functools.partial(self._test_backward_hooks_after_save, cuda_first=False)
spawn_and_init(fn)
@classmethod
def _test_backward_hooks_after_save(self, rank, group, cuda_first=False):
model = self.get_wrapped_model(group, cuda_first=cuda_first)
self._train_for_several_steps(model, 2, model.mixed_precision)
state_1 = model.local_state_dict()
model.load_local_state_dict(state_1)
self._test_output_backward_hooks(rank, group, cuda_first=cuda_first, model=model)
@classmethod
def _test_output_backward_hooks(self, rank, group, cuda_first=False, model=None):
if model is None:
model = self.get_wrapped_model(group, cuda_first=cuda_first)
optim = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optim.zero_grad()
# Inputs always cuda regardless of move_grads_cpu, or model.device
input = model.module.get_input(torch.device("cuda"))
output = model(*input)
assert len(output._backward_hooks) == 1 # this is pre-bwd hook
loss = model.module.get_loss(input, output).cuda()
loss.backward()
assert len(output._backward_hooks) == 1 # It doesn't get removed
optim.step()
assert len(output._backward_hooks) == 1
@parameterized.expand([[True], [False]])
def test_register_functions_called(self, cuda_first):
fn = functools.partial(self._test_register_functions_called, cuda_first=cuda_first)
spawn_and_init(fn)
@classmethod
def _test_register_functions_called(self, rank, group, cuda_first=False):
"""Tests that _register_{pre|post}_backward_hooks called during forward."""
model = self.get_wrapped_model(group, cuda_first=cuda_first)
input = model.module.get_input(torch.device("cuda"))
model._register_post_backward_hooks = mock.MagicMock(return_value=None)
model._register_pre_backward_hooks = mock.MagicMock(return_value=None)
assert not model._register_post_backward_hooks.called
assert not model._register_pre_backward_hooks.called
model(*input)
assert model._register_post_backward_hooks.called
assert model._register_pre_backward_hooks.called
@pytest.mark.skipif(torch_version() < (1, 8, 0), reason="pytorch version >= 1.8.0 required")
class TestNoGrad(DistributedTest):
@parameterized.expand(CONFIG_OPTIONS, name_func=rename_test)
def test_transformer_parameterized(self, config):
test_fn = functools.partial(self._test_transformer, config=config)
spawn_and_init(test_fn)
@classmethod
def _test_transformer(self, rank, group, config):
autocast = config["mixed_precision"]
# Train model for a step
model = self.get_wrapped_model(group, cuda_first=False, config=config)
self._train_for_several_steps(model, 1, autocast)
model.eval() # no dropout for this test
# Eval in standard mode (i.e., without no_grad)
input = model.module.get_input(torch.device("cuda"))
ref_output = model(*input)
# Eval with no_grad and compare
with torch.no_grad():
no_grad_output = model(*input)
assert objects_are_equal(ref_output, no_grad_output, raise_exception=True)
@pytest.mark.skipif(torch_version() < (1, 8, 0), reason="pytorch version >= 1.8.0 required")
class TestModuleProperties(DistributedTest):
@parameterized.expand([[{"flatten_parameters": False}], [{"flatten_parameters": True}]], name_func=rename_test)
def test_named_parameters(self, config):
test_fn = functools.partial(self._test_named_params, config=config)
spawn_and_init(test_fn)
@classmethod
def _test_named_params(self, rank, group, config):
# Get the named parameters before wrapping.
before_wrap_model = TransformerWithSharedParams(group)
before_wrap_params = before_wrap_model.named_parameters()
# Train the model for 1 step.
model = self.get_wrapped_model(group, cuda_first=False, config=config)
self._train_for_several_steps(model, 1, autocast=False)
# Get the named parameters after wrapping to compare.
after_wrap_params = model.named_parameters()
if not config["flatten_parameters"]:
for before_nm, after_nm in zip(before_wrap_params, after_wrap_params):
assert before_nm[0] == after_nm[0]
else:
named_params_flat = [p for p in after_wrap_params][0][0]
assert "flat_param_0" in named_params_flat
# Compare name and size under the `summon_full_params` context.
with model.summon_full_params():
after_wrap_params = model.named_parameters()
for before_nm, after_nm_original in zip(before_wrap_params, after_wrap_params):
assert before_nm[0] == after_nm_original[0]
torch.testing.assert_allclose(before_nm[1].shape, after_nm_original[1].cpu().shape)
class TestResetParameters(DistributedTest):
def test_reset_parameters(self):
"""Ensure that reduce_scatter_process_group same size with the world size."""
test_fn = functools.partial(self._test_reset, config={})
spawn_and_init(test_fn, world_sizes=[2])
@classmethod
def _test_reset(self, rank, group, config):
model = self._get_model(group, config)
with model.summon_full_params():
model.reset_parameters()
@classmethod
def _get_model(self, group, config):
with torch.no_grad(): # required for multiprocessing
model = nn.Linear(10, 10)
return FullyShardedDataParallel(model, group, allow_reset_parameters=True, **config)
class TransformerWithSharedParams(nn.Module):
def __init__(self, group, *unused_args, d_vocab=23, d_model=16, add_bn=True, **unused_kwargs):
super().__init__()
self.rank = group.rank()
self.world_size = group.size()
torch.manual_seed(0) # keep everything deterministic
assert d_vocab >= 12 # we use torch.arange(12) as input
self.embed_tokens = nn.Embedding(d_vocab, d_model)
self.transformer = nn.Transformer(
d_model=d_model,
num_encoder_layers=2,
num_decoder_layers=2,
dim_feedforward=8,
dropout=0.1,
)
self.output_proj = nn.Linear(d_model, d_vocab)
# share the embedding and output projection weights
self.output_proj.weight = self.embed_tokens.weight
self.register_buffer("vocab_bias", self.embed_tokens.weight.new_ones((d_model,)))
self.register_buffer("long_buffer", torch.zeros_like(self.vocab_bias, dtype=torch.long))
self.bs = 2
self.bn = torch.nn.BatchNorm1d(self.bs) if add_bn else torch.nn.Identity()
def get_input(self, device):
torch.manual_seed(1 + self.rank) # keep everything deterministic
src = torch.arange(12, device=device).view(6, self.bs) # T x B
tgt = torch.arange(self.bs * 4, device=device).view(4, self.bs) # T x B
return (src, tgt)
def forward(self, src_ids, tgt_ids):
src = self.embed_tokens(src_ids)
src = src + self.vocab_bias + self.long_buffer.type_as(src)
tgt = self.embed_tokens(tgt_ids)
tgt = self.bn(tgt)
x = self.transformer(src, tgt)
return self.output_proj(x)
def get_loss(self, input, output):
_, tgt = input
return nn.functional.cross_entropy(output.view(-1, output.size(-1)), tgt.view(-1), reduction="sum")
def run_backward(self, loss):
loss.backward()
class NestedWrappedModule(nn.Module):
def __init__(self, group, wrapper_config, wrap_everything=False, checkpoint=False):
super().__init__()
self.rank = group.rank()
self.world_size = group.size()
self.wrapper_config = wrapper_config
def _maybe_wrap(layer):
if wrapper_config is not None:
return FullyShardedDataParallel(layer, group, **wrapper_config)
return layer
torch.manual_seed(0) # keep everything deterministic
self.module = nn.Sequential(
nn.Linear(8, 4),
_maybe_wrap(
nn.Sequential(
_maybe_wrap(nn.Linear(4, 16)),
nn.Linear(16, 16),
)
),
_maybe_wrap(nn.Linear(16, 4)),
nn.Linear(4, 8),
)
# Wrap all modules triggers a corner case where root FSDP doesn't have any params.
# Test it with checkpoint_wrapper as well to validate final backward callback
# is queued correctly when root FSDP does not have any params and every layer is
# wrapped as FSDP(checkpoint(module)).
if wrap_everything:
if checkpoint:
self.module = nn.Sequential(
_maybe_wrap(checkpoint_wrapper(nn.Linear(8, 4))),
_maybe_wrap(checkpoint_wrapper(nn.Linear(4, 16))),
_maybe_wrap(checkpoint_wrapper(nn.Linear(16, 4))),
_maybe_wrap(checkpoint_wrapper(nn.Linear(4, 8))),
)
else:
self.module = nn.Sequential(
_maybe_wrap(nn.Linear(8, 4)),
_maybe_wrap(nn.Linear(4, 16)),
_maybe_wrap(nn.Linear(16, 4)),
_maybe_wrap(nn.Linear(4, 8)),
)
def get_input(self, device):
torch.manual_seed(1 + self.rank) # keep everything deterministic
return (torch.rand(4, 8, device=device),)
def forward(self, x):
return self.module(x)
def get_loss(self, input, output):
loss = output.sum()
return loss
def run_backward(self, loss):
loss.backward()
class DummyDDP(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
class MixtureOfExperts(NestedWrappedModule):
def __init__(self, group, wrapper_config, checkpoint_act=False, delay_before_free_ms=0, expert_group=None):
super().__init__(group, wrapper_config)
self.group = group
self.delay_before_free_ms = delay_before_free_ms
# "expert" params are different on each rank
torch.manual_seed(42 + group.rank())
d_expert = 23
d_shared = 12
d_input = 8
expert = nn.Linear(d_expert, d_shared)
self.num_expert_params = sum([p.numel() for p in expert.parameters()])
for p in expert.parameters():
p.expert = True
# everything else is shared
torch.manual_seed(0)
shared = nn.Linear(d_shared, d_expert)
if checkpoint_act:
expert = checkpoint_wrapper(expert)
shared = checkpoint_wrapper(shared)
if wrapper_config is not None:
# we create a process group of size >= 1 for the expert params
# we also need to pass that group as the reduce_scatter group.
expert_group = expert_group or torch.distributed.new_group([group.rank()])
expert = FullyShardedDataParallel(
expert, process_group=expert_group, process_group_reduce_scatter=expert_group, **wrapper_config
)
shared = FullyShardedDataParallel(shared, group, **wrapper_config)
self.module = nn.Sequential(nn.Linear(d_input, d_shared), shared, expert, nn.Linear(d_shared, d_input))
def forward(self, x):
if self.delay_before_free_ms > 0:
expert = self.module[2]
if isinstance(expert, FullyShardedDataParallel):
orig_free_full_params = self.module[2]._free_full_params
def _free_full_params_with_delay(*args):
torch.cuda._sleep(int(self.delay_before_free_ms * get_cycles_per_ms()))
return orig_free_full_params(*args)
assert hasattr(expert, "_free_full_params")
with mock.patch.object(expert, "_free_full_params", _free_full_params_with_delay):
return self.module(x)
return self.module(x)
def run_backward(self, loss):
loss.backward()
# manually reduce gradients if not wrapped in FullyShardedDataParallel
if self.wrapper_config is None:
with torch.no_grad():
for p in self.parameters():
if hasattr(p, "expert"):
continue # these params don't need grad reduction
p.grad.data.div_(self.world_size)
torch.distributed.all_reduce(p.grad.data, group=self.group)
class ModuleWithDelay(nn.Module):
def __init__(self, module, delay_after_loss_ms=0, delay_before_reduction_ms=0):
super().__init__()
self.delay_after_loss_ms = delay_after_loss_ms
self.delay_before_reduction_ms = delay_before_reduction_ms
self.module = module
def get_input(self, device):
return self.module.get_input(device)
def forward(self, x):
return self.module(x)
def get_loss(self, input, output):
loss = self.module.get_loss(input, output)
if self.delay_after_loss_ms > 0:
torch.cuda._sleep(int(self.delay_after_loss_ms * get_cycles_per_ms()))
return loss
def run_backward(self, loss):
orig_reduce_scatter = torch.distributed.reduce_scatter
def _delayed_reduce_scatter(*args, **kwargs):
if self.delay_before_reduction_ms > 0:
torch.cuda._sleep(int(self.delay_before_reduction_ms * get_cycles_per_ms()))
return orig_reduce_scatter(*args, **kwargs)
with mock.patch("torch.distributed.reduce_scatter", _delayed_reduce_scatter):
self.module.run_backward(loss)
class NestedWrappedModuleWithDelay(ModuleWithDelay):
def __init__(self, group, wrapper_config, **kwargs):
super().__init__(NestedWrappedModule(group, wrapper_config), **kwargs)
def spawn_and_init(fn, args=None, **spawn_kwargs):
if args is None:
args = ()
run_fn = functools.partial(init_and_run, fn, args)
spawn_for_all_world_sizes(run_fn, **spawn_kwargs)
def init_and_run(fn, args, rank, world_size, filename, filename_rpc):
dist_init(rank, world_size, filename, filename_rpc)
group = torch.distributed.new_group()
fn(rank, group, *args)
if __name__ == "__main__":
unittest.main()