-
Notifications
You must be signed in to change notification settings - Fork 340
/
preproc.py
321 lines (259 loc) · 12.3 KB
/
preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from datetime import datetime
import os
import random
import sys
import threading
import numpy as np
import tensorflow as tf
import json
RESIZE_HEIGHT = 256
RESIZE_WIDTH = 256
tf.app.flags.DEFINE_string('fold_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/train_val_txt_files_per_fold/test_fold_is_0',
'Fold directory')
tf.app.flags.DEFINE_string('data_dir', '/data/xdata/age-gender/aligned',
'Data directory')
tf.app.flags.DEFINE_string('output_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0',
'Output directory')
tf.app.flags.DEFINE_string('train_list', 'age_train.txt',
'Training list')
tf.app.flags.DEFINE_string('valid_list', 'age_val.txt',
'Test list')
tf.app.flags.DEFINE_integer('train_shards', 10,
'Number of shards in training TFRecord files.')
tf.app.flags.DEFINE_integer('valid_shards', 2,
'Number of shards in validation TFRecord files.')
tf.app.flags.DEFINE_integer('num_threads', 2,
'Number of threads to preprocess the images.')
FLAGS = tf.app.flags.FLAGS
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _convert_to_example(filename, image_buffer, label, height, width):
"""Build an Example proto for an example.
Args:
filename: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
label: integer, identifier for the ground truth for the network
height: integer, image height in pixels
width: integer, image width in pixels
Returns:
Example proto
"""
example = tf.train.Example(features=tf.train.Features(feature={
'image/class/label': _int64_feature(label),
'image/filename': _bytes_feature(str.encode(os.path.basename(filename))),
'image/encoded': _bytes_feature(image_buffer),
'image/height': _int64_feature(height),
'image/width': _int64_feature(width)
}))
return example
class ImageCoder(object):
"""Helper class that provides TensorFlow image coding utilities."""
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
cropped = tf.image.resize_images(self._decode_jpeg, [RESIZE_HEIGHT, RESIZE_WIDTH])
cropped = tf.cast(cropped, tf.uint8)
self._recoded = tf.image.encode_jpeg(cropped, format='rgb', quality=100)
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def resample_jpeg(self, image_data):
image = self._sess.run(self._recoded, #self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
return image
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def _process_image(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
# Decode the RGB JPEG.
image = coder.resample_jpeg(image_data)
return image, RESIZE_HEIGHT, RESIZE_WIDTH
def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
labels, num_shards):
"""Processes and saves list of images as TFRecord in 1 thread.
Args:
coder: instance of ImageCoder to provide TensorFlow image coding utils.
thread_index: integer, unique batch to run index is within [0, len(ranges)).
ranges: list of pairs of integers specifying ranges of each batches to
analyze in parallel.
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
labels: list of integer; each integer identifies the ground truth
num_shards: integer number of shards for this data set.
"""
# Each thread produces N shards where N = int(num_shards / num_threads).
# For instance, if num_shards = 128, and the num_threads = 2, then the first
# thread would produce shards [0, 64).
num_threads = len(ranges)
assert not num_shards % num_threads
num_shards_per_batch = int(num_shards / num_threads)
shard_ranges = np.linspace(ranges[thread_index][0],
ranges[thread_index][1],
num_shards_per_batch + 1).astype(int)
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
counter = 0
for s in xrange(num_shards_per_batch):
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
shard = thread_index * num_shards_per_batch + s
output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
output_file = os.path.join(FLAGS.output_dir, output_filename)
writer = tf.python_io.TFRecordWriter(output_file)
shard_counter = 0
files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int)
for i in files_in_shard:
filename = filenames[i]
label = int(labels[i])
image_buffer, height, width = _process_image(filename, coder)
example = _convert_to_example(filename, image_buffer, label,
height, width)
writer.write(example.SerializeToString())
shard_counter += 1
counter += 1
if not counter % 1000:
print('%s [thread %d]: Processed %d of %d images in thread batch.' %
(datetime.now(), thread_index, counter, num_files_in_thread))
sys.stdout.flush()
writer.close()
print('%s [thread %d]: Wrote %d images to %s' %
(datetime.now(), thread_index, shard_counter, output_file))
sys.stdout.flush()
shard_counter = 0
print('%s [thread %d]: Wrote %d images to %d shards.' %
(datetime.now(), thread_index, counter, num_files_in_thread))
sys.stdout.flush()
def _process_image_files(name, filenames, labels, num_shards):
"""Process and save list of images as TFRecord of Example protos.
Args:
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
labels: list of integer; each integer identifies the ground truth
num_shards: integer number of shards for this data set.
"""
assert len(filenames) == len(labels)
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
ranges = []
threads = []
for i in xrange(len(spacing) - 1):
ranges.append([spacing[i], spacing[i+1]])
# Launch a thread for each batch.
print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))
sys.stdout.flush()
# Create a mechanism for monitoring when all threads are finished.
coord = tf.train.Coordinator()
coder = ImageCoder()
threads = []
for thread_index in xrange(len(ranges)):
args = (coder, thread_index, ranges, name, filenames, labels, num_shards)
t = threading.Thread(target=_process_image_files_batch, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
print('%s: Finished writing all %d images in data set.' %
(datetime.now(), len(filenames)))
sys.stdout.flush()
def _find_image_files(list_file, data_dir):
print('Determining list of input files and labels from %s.' % list_file)
files_labels = [l.strip().split(' ') for l in tf.gfile.FastGFile(
list_file, 'r').readlines()]
labels = []
filenames = []
# Leave label index 0 empty as a background class.
label_index = 1
# Construct the list of JPEG files and labels.
for path, label in files_labels:
jpeg_file_path = '%s/%s' % (data_dir, path)
if os.path.exists(jpeg_file_path):
filenames.append(jpeg_file_path)
labels.append(label)
unique_labels = set(labels)
# Shuffle the ordering of all image files in order to guarantee
# random ordering of the images with respect to label in the
# saved TFRecord files. Make the randomization repeatable.
shuffled_index = list(range(len(filenames)))
random.seed(12345)
random.shuffle(shuffled_index)
filenames = [filenames[i] for i in shuffled_index]
labels = [labels[i] for i in shuffled_index]
print('Found %d JPEG files across %d labels inside %s.' %
(len(filenames), len(unique_labels), data_dir))
return filenames, labels
def _process_dataset(name, filename, directory, num_shards):
"""Process a complete data set and save it as a TFRecord.
Args:
name: string, unique identifier specifying the data set.
directory: string, root path to the data set.
num_shards: integer number of shards for this data set.
labels_file: string, path to the labels file.
"""
filenames, labels = _find_image_files(filename, directory)
_process_image_files(name, filenames, labels, num_shards)
unique_labels = set(labels)
return len(labels), unique_labels
def main(unused_argv):
assert not FLAGS.train_shards % FLAGS.num_threads, (
'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards')
assert not FLAGS.valid_shards % FLAGS.num_threads, (
'Please make the FLAGS.num_threads commensurate with '
'FLAGS.valid_shards')
print('Saving results to %s' % FLAGS.output_dir)
if os.path.exists(FLAGS.output_dir) is False:
print('creating %s' % FLAGS.output_dir)
os.makedirs(FLAGS.output_dir)
# Run it!
valid, valid_outcomes = _process_dataset('validation', '%s/%s' % (FLAGS.fold_dir, FLAGS.valid_list), FLAGS.data_dir,
FLAGS.valid_shards)
train, train_outcomes = _process_dataset('train', '%s/%s' % (FLAGS.fold_dir, FLAGS.train_list), FLAGS.data_dir,
FLAGS.train_shards)
if len(valid_outcomes) != len(valid_outcomes | train_outcomes):
print('Warning: unattested labels in training data [%s]' % (', '.join((valid_outcomes | train_outcomes) - valid_outcomes)))
output_file = os.path.join(FLAGS.output_dir, 'md.json')
md = { 'num_valid_shards': FLAGS.valid_shards,
'num_train_shards': FLAGS.train_shards,
'valid_counts': valid,
'train_counts': train,
'timestamp': str(datetime.now()),
'nlabels': len(train_outcomes) }
with open(output_file, 'w') as f:
json.dump(md, f)
if __name__ == '__main__':
tf.app.run()